
Accelerating Pre- and Post-Quantum Cryptography

Tung Chou

Copyright c© 2016 by Tung Chou.

Printed by Printservice Technische Universiteit Eindhoven.

The cover illustrates the data flow in a size-8 Gao–Matter additive FFT: the back
cover for the radix conversions and twistings and the front cover for the FFT
butterflies.

A catalogue record is available from the Eindhoven University of Technology Library

ISBN 978-90-386-4105-8
NUR 919

Accelerating Pre- and Post-Quantum Cryptography

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. F.T.P. Baaijens, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op maandag 27 juni 2016 om 16.00 uur

door

Tung Chou

geboren te Taipei, Taiwan

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. J. de Vlieg
1e promotor: prof.dr. D.J. Bernstein
2e promotor: prof.dr. T. Lange
leden: prof.dr.ir. J. Draisma

prof.dr. M. Scott (Dublin City University)
dr.habil. N. Sendrier (INRIA Rocquencourt)
prof.dr. V. Shoup (New York University)
prof.dr. B.-Y. Yang (Academia Sinica)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Acknowledgement

First, I would like to thank my supervisors Daniel J. Bernstein and Tanja Lange
for giving me the chance to work with them. Dan offered me the freedom to work on
what I found interesting, and I really appreciate all the suggestions and comments he
gave me during our discussions. Tanja always tries to give me reasons to feel more
confident in myself and has always been helpful and supportive in many different
ways.

Most of my papers are joint work with others, and therefore I would like to thank
my coauthors Daniel J. Bernstein, Chen-Mou Cheng, Chitchanok Chuengsatiansup,
Andreas Hülsing, Eran Lambooij, Tanja Lange, Ruben Niederhagen, Claudio Or-
landi, Peter Schwabe, Christine van Vredendaal, and Bo-Yin Yang for the fruitful
collaborations.

I thank Jan Draisma, Michael Scott, Nicolas Sendrier, Victor Shoup, and Bo-Yin
Yang for joining my committee and giving valuable feedback for my thesis.

I thank Tsuyoshi Takagi, Chen-Mou Cheng, Claudio Orlandi, Tim Güneysu and
Christof Paar for inviting (or helping) me to have research visits in their current or
previous groups.

I would like to thank Peter Schwabe for the discussions we had in Nijmegen and
for proofreading part of my thesis. I would like to thank Ruben Niederhagen for
giving me lots of useful comments and tips on how to improve my thesis.

Special thanks go to my previous supervisor Chen-Mou Cheng and my previous
boss Bo-Yin Yang. It felt difficult to find motivation, until they brought me into the
area of cryptography.

Finally, I would like to thank my parents for all the support.

Contents

1 Introduction 1

I Preliminaries 5

2 Cryptographic implementations 7
2.1 Vectorization . 7
2.2 Timing attacks and constant-time implementations 8
2.3 Bitslicing . 9
2.4 qhasm . 9

3 The Gao–Mateer additive FFT 11
3.1 Additive FFT: overview . 12
3.2 Additive FFT: detail . 12
3.3 Radix conversion: an example . 13
3.4 The radix-conversion subroutine . 14

II Binary-field Cryptography 17

4 McBits: fast constant-time code-based cryptography 19
4.1 Field arithmetic . 24

4.1.1 Addition . 24
4.1.2 Multiplication . 24
4.1.3 Squaring . 24
4.1.4 Inversion . 25

4.2 Finding roots: the Gao–Mateer additive FFT 25
4.2.1 Application to decoding . 25
4.2.2 Multipoint evaluation . 25
4.2.3 FFT improvement: 1-coefficient polynomials 26
4.2.4 FFT improvement: 2-coefficient and 3-coefficient polynomials . 26
4.2.5 Results . 26
4.2.6 Other algorithms . 27

4.3 Syndrome computation: transposing the additive FFT 28
4.3.1 Application to decoding . 28
4.3.2 Syndrome computation as the transpose of multipoint evaluation 28

4.3.3 Transposing linear algorithms 28
4.3.4 Transposing the additive FFT 29
4.3.5 Improvement: transposed additive FFT on scaled bits 30

4.4 Secret permutations without secret array indices: odd-even sorting . . 31
4.4.1 Sorting networks . 31
4.4.2 Precomputed comparisons . 32
4.4.3 Permutation networks . 32
4.4.4 Alternative: random condition bits 32

4.5 A complete code-based cryptosystem 33
4.5.1 Parameters . 34
4.5.2 Key generation . 34
4.5.3 Encryption . 35
4.5.4 Decryption . 35

4.6 New speed records for CFS signatures 36
4.6.1 Review of CFS . 37
4.6.2 Previous CFS speeds . 37
4.6.3 New CFS software . 37
4.6.4 New CFS speeds . 38

5 QcBits: constant-time small-key code-based cryptography 39
5.1 Preliminaries . 42

5.1.1 QC-MDPC codes . 42
5.1.2 Decoding (QC-)MDPC codes 43
5.1.3 The Niederreiter KEM/DEM encryption system for QC-MDPC

codes . 44
5.2 Key-pair generation . 45

5.2.1 Private-key generation . 45
5.2.2 Polynomial view: public-key generation 46
5.2.3 Generic multiplication in F2[x]/(xn − 1) 47
5.2.4 Generic squaring in F2[x]/(xn − 1) 48

5.3 KEM encryption . 49
5.3.1 Generating the error vector . 49
5.3.2 Polynomial view: public-syndrome computation 49
5.3.3 Sparse-times-dense multiplications in F2[x]/(xn − 1) 49

5.4 KEM decryption . 51
5.4.1 Polynomial view: private-syndrome computation 51
5.4.2 Polynomial view: counting unsatisfied parity checks 52
5.4.3 Sparse-times-dense multiplications in Z[x]/(xn − 1) 52
5.4.4 Flipping bits . 53

5.5 Experimental results for decoding . 54
5.6 The future of QC-MDPC-based cryptosystems 55

6 Auth256: faster binary-field multiplication and faster binary-field
MACs 57
6.1 Field arithmetic in F28 . 60

6.1.1 Review of tower fields . 60

6.1.2 Variable multiplications . 60
6.1.3 Constant multiplications . 61
6.1.4 Subfields and decomposability 61

6.2 Faster additive FFTs . 62
6.2.1 Size-4 FFTs: the lowest level of recursion 62
6.2.2 The size-8 FFTs: the first recursive case 62
6.2.3 The size-16 FFTs: saving additions for radix conversions 63
6.2.4 Size-16 FFTs continued: decomposition at field-element level . 64
6.2.5 Improvements: a summary . 64
6.2.6 Polynomial multiplications: a comparison with Karatsuba and

Toom . 65
6.3 The Auth256 message-authentication code: major features 65

6.3.1 Output size: bigger-birthday-bound security 66
6.3.2 Pseudo dot products and FFT addition 66
6.3.3 Embedding invertible linear operations into FFT inputs 67

6.4 Software implementation . 68
6.4.1 Minimizing memory operations in radix conversions 69
6.4.2 Minimizing memory operations in muladdadd operations 69
6.4.3 Implementing the size-16 additive FFT 70

6.5 Auth256: minor details . 70
6.5.1 Review of Wegman–Carter MACs 70
6.5.2 Field representation . 70
6.5.3 Hash256 padding and conversion 71
6.5.4 Hash256 and Auth256 keys and authenticators 71

6.6 Security proof . 72

III Elliptic-Curve Cryptography 75

7 The simplest protocol for oblivious transfer 77
7.1 The protocol . 80

7.1.1 Random OT . 81
7.1.2 How to use the protocol and UC Security 81
7.1.3 Simulation based security (UC) 83

7.2 The random OT protocol in practice 84
7.3 Field arithmetic . 87
7.4 Implementation results . 89

8 Sandy2x: new Curve25519 speed records 91
8.1 Arithmetic in F2255−19 . 94

8.1.1 The radix-251 representation 94
8.1.2 The radix-225.5 representation 95
8.1.3 Why is smaller radix better? 97
8.1.4 Importance of using a small constant 98
8.1.5 Instruction scheduling for vectorized field arithmetic 99

8.2 The Curve25519 elliptic-curve-Diffie-Hellman scheme 99

8.2.1 Shared-secret computation . 100
8.2.2 Public-key generation . 101

8.3 Vectorizing the Ed25519 signature scheme 103
8.3.1 Ed25519 verification . 103

9 How to manipulate curve standards:
a white paper for the black hat 105
9.1 Pesky public researchers and their security analyses 109

9.1.1 Warning: math begins here . 110
9.1.3 ECC security vs. ECDLP security 111
9.1.4 The probability δ of passing public criteria 112
9.1.5 The probabilities for various feasible attacks 114

9.2 Manipulating curves . 116
9.2.1 Curves without public justification 116
9.2.2 The attack . 117
9.2.3 Implementation . 117

9.3 Manipulating seeds . 119
9.3.1 Hash verification routine . 119
9.3.2 Acceptability criteria . 120
9.3.3 The attack . 120
9.3.4 Optimizing the attack . 121
9.3.5 Implementation . 121

9.4 Manipulating nothing-up-my-sleeve numbers 123
9.4.1 The Brainpool procedure . 124
9.4.2 The BADA55-VPR-224 procedure 126
9.4.3 How BADA55-VPR-224 was generated 127
9.4.4 Manipulating bit-extraction procedures 128
9.4.5 Manipulating choices of hash functions 129
9.4.6 Manipulating counter sizes . 130
9.4.7 Manipulating hash input sizes 130
9.4.8 Manipulating the (a, b) hash pattern 131
9.4.9 Manipulating natural constants 131
9.4.10 Implementation . 132

9.5 Manipulating minimality . 133
9.5.1 NUMS curves . 133
9.5.2 Choice of security level . 134
9.5.3 Choice of prime . 134
9.5.4 Choice of ordering of field elements 136
9.5.5 Choice of curve shape and cofactor requirement 136
9.5.6 Choice of twist security . 138
9.5.7 Choice of global vs. local curves 139
9.5.8 More choices . 139
9.5.9 Overall count . 139
9.5.10 Example . 140

9.6 Manipulating security criteria . 140
9.7 Afterword: removing the hat . 141

9.8 Scripts . 142

IV Multivariate System Solving with XL 149

10 Parallel implementation of the XL algorithm 151
10.1 The XL algorithm . 152

10.1.1 The Block Wiedemann algorithm 152
10.2 The block Berlekamp–Massey algorithm 153

10.2.1 Reducing the cost of the Berlekamp–Massey algorithm 154
10.2.2 Parallelization of the Berlekamp–Massey algorithm 155

10.3 Thomé’s version of the block Berlekamp–Massey algorithm 158
10.3.1 Matrix polynomial multiplications 158
10.3.2 Parallelization of Thomé’s Berlekamp–Massey algorithm 159

10.4 Implementation of XL . 160
10.4.1 Efficient matrix multiplication 160
10.4.2 Parallel Macaulay matrix multiplication 161

10.5 Experimental results . 165
10.5.1 Impact of the block size . 166
10.5.2 Scalability experiments . 167
10.5.3 Comparison with PWXL and Magma F4 169
10.5.4 Performance for computation on large systems 170

Bibliography 171

1
Introduction

Cryptography is the art of securing communication. The security comes with costs,
however. There are computation costs for cryptographic operations such as encryp-
tion, decryption, signing, and verification. There are memory costs for storing the
keys and carrying out cryptographic computations. There are also communication
costs for parties involved in a protocol to exchange messages. In practice, these costs
determine how widely a cryptographic scheme can be deployed. If the costs are too
high, the users might not be able to afford it.

The works presented in this thesis focus on reducing computation costs of crypto-
graphic software. There are many ways to accelerate cryptographic software. Similar
to optimizing other types of software, there are different levels that one can work on.
At a high level, one can perform platform-independent optimizations. This includes
improving the existing algorithms or even designing new algorithms in order to reduce
the number of operations (e.g., field multiplications) or even the complexity. At a low
level, one can perform platform-dependent optimizations. This includes figuring out
the best CPU instructions to use and instruction rescheduling for hiding instruction
latencies.

Accelerating cryptographic software, however, is not the same as accelerating other
types of software. The reason is that cryptographic implementations, in addition to
carrying out the expected computation, need to be secure in a hostile environment.
The adversary can often gain valuable information about the secret if the implemen-
tation itself leaks any information about it. Therefore, cryptographic computations
should be leakage-free. Most of the implementations presented in this thesis aim to
accelerate cryptographic software while being leakage-free.

In addition to accelerating cryptographic software, a small portion of this the-
sis is devoted to accelerating cryptanalytic software. Cryptanalytic software typi-
cally demands a large amount of computing resources, while cryptographic software

1

2 CHAPTER 1. INTRODUCTION

is often required to run on very restricted platforms. Also, cryptanalytic software
is not required to avoid leaking information about the computation since there is
no secret. Optimizing cryptanalytic software is thus quite different from optimizing
cryptographic software.

Post-quantum cryptography

In 1997, Shor showed in his seminal work [Sho97], that the most popular public-key
cryptosystems nowadays, such as RSA and discrete-logarithm-based systems, can be
broken efficiently using large-scale quantum computers. Fortunately, there are a set
of cryptosystems that withstand Shor’s and all other known quantum algorithms,
and the study of these cryptosystems is called post-quantum cryptography. The most
studied post-quantum public-key systems are multivariate cryptosystems, code-based
cryptosystems, lattice-based cryptosystems, and hash-based cryptosystems. Note
that symmetric cryptosystems also belong to post-quantum cryptography.

Quantum computers are not an immediate threat, as it seems rather unlikely
for large-scale quantum computers to be practical in 10 years. Unfortunately, post-
quantum public-key cryptosystems are in general less usable than pre-quantum ones.
For example, the first code-based encryption system, the original McEliece cryptosys-
tem based on binary Goppa codes [McE78], can be implemented efficiently and its
security is quite confidence-inspiring, but it uses large keys of size up to a megabyte.
The lattice-based encryption system NTRU [HPS98] is rather efficient in both key
size and runtime, but it is not quite as confidence-inspiring. It will take years for
cryptographers to find satisfying post-quantum schemes, and it will take years to ac-
tually get these schemes deployed. If we want to be able to secure communication in
the post-quantum world, it is essential to start now.

In February 2016, NIST announced their Call for Proposals for post-quantum
cryptosystems at the Seventh International Conference on Post-Quantum Cryptogra-
phy (PQCrypto). They announced that the deadline for submission will be in 2017,
followed by an analysis phase of 3-5 years. This shows that post-quantum cryptogra-
phy is no longer only a research area for the distant future; cryptography is actually
moving towards the post-quantum world. In this thesis, I will present two works that
are devoted to accelerating code-based encryption systems while being leakage-free.

Overview

The rest of this thesis is composed of four parts. The first part is the Preliminaries.
Chapter 2 gives some background on implementation that is useful for the following
chapters. Chapter 3 reviews the additive FFT proposed by Shuhong Gao and Todd
Mateer in 2010. The works presented in Chapter 4 and 6 make use of, and improve,
this algorithm to speed up code-based and symmetric cryptosystems.

The second part covers binary-field cryptography. Chapter 4 presents a constant-
time implementation for the McEliece cryptosystem using binary Goppa codes. This
chapter is based on the CHES 2013 paper “McBits: fast constant-time code-based
cryptography” [BCS13] with Daniel J. Bernstein and Peter Schwabe. The main dif-
ference between this chapter and the paper is that the paper contains a short de-

3

scription for the Gao–Mateer additive FFT, which is now covered more extensively
by Chapter 3. Also, the chapter includes updated comparison for newer results.

Chapter 5 presents a constant-time implementation for the McEliece cryptosystem
using QC-MDPC codes. This chapter is based on my preprint “QcBits: constant-time
small-key code-based cryptography” [Cho16].

Chapter 6 presents a high-security message authentication code which is designed
for minimizing bit operations. This chapter is based on the SAC 2014 paper “Faster
binary-field multiplication and faster binary-field MACs” [BC14] with Daniel J. Bern-
stein. Except for minor changes for formatting, there is essentially no difference
between the chapter and the paper.

The third part covers elliptic-curve cryptography. Chapter 7 presents an optimized
protocol for oblivious transfers, along with a constant-time implementation. This
chapter is based on the Latincrypt 2015 paper “The simplest protocol for oblivious
transfer” [CO15] with Claudio Orlandi. The main difference between the chapter and
the paper is that the paper includes proofs for theorems and lemmas.

Chapter 8 presents a constant-time implementation for Curve25519. This chapter
is based on my paper “Sandy2x: new Curve25519 speed records” [Cho15] at SAC 2015.
Except for minor changes for formatting, there is essentially no difference between the
chapter and the paper.

Chapter 9 presents an approach to manipulate curve standards. This chapter is
based on the full version of the SSR 2015 paper “How to manipulate curve standards:
a white paper for the black hat” [BCC+15] with Daniel J. Bernstein, Chitchanok
Chuengsatiansup, Andreas Hülsing, Eran Lambooij, Tanja Lange, Ruben Niederha-
gen, and Christine van Vredendaal. Except for minor changes for formatting, there
is essentially no difference between this chapter and the paper.

The fourth part covers polynomial-system solving. Chapter 10 presents an imple-
mentation for the extended linearization (XL) algorithm. This chapter is based on
an extended version of the CHES 2012 paper “Solving quadratic equations with XL
on parallel architectures” [CCN+12] with Chen-Mou Cheng, Ruben Niederhagen, and
Bo-Yin Yang. In particular, Sections 10.2 and 10.3 go beyond the conference version.

Part I

Preliminaries

5

2
Cryptographic implementations

This chapter gives some background on implementation that is useful for the fol-
lowing chapters. Section 2.1 reviews vectorization, i.e., the usage of vector units.
Section 2.2 reviews the concept of timing attacks and what programmers can do to
avoid them. Section 2.3 reviews bitslicing, a technique of manipulating bit-transposed
data. Section 2.4 reviews the development tool “qhasm” for assembly programming.

2.1 Vectorization
Most CPUs nowadays contain a set of general-purpose registers of width 32 or 64 bits.
A large set of instructions are available for manipulating these registers, including
integer arithmetic instructions and bitwise logical instructions. With the instructions
for manipulating general-purpose registers, CPUs are able to carry out a wide variety
of tasks efficiently. However, vector units made CPUs even more computationally
powerful.

In 1999, Intel introduced the Streaming SIMD Extensions (SSE) to the x86 archi-
tecture. In particular, a set of 128-bit registers, called XMM registers, were introduced
for the extension. SSE and its successors (SSE2, SSE3, etc.) provide instructions for
manipulating the XMM registers. Typical instructions include entry-wise arithmetic
operations (additions, subtractions, multiplications, etc.) viewing each operand as
a vector of 4 32-bit or 2 64-bit integers/floating-point numbers, and bitwise logical
instructions. In 2008, Intel introduced the Advanced Vector Extensions (AVX). AVX
(and its successor AVX2) instructions provide a similar functionality as SSE, but they
operate on longer vectors.

With SSE/AVX instructions, several 32/64-bit operations can be carried out in
one instruction. However, since these operations are carried out in parallel, the pro-
grammer needs to find independent 32/64-bit operations in the algorithm in order

7

8 CHAPTER 2. CRYPTOGRAPHIC IMPLEMENTATIONS

to fully exploit the power of vector instructions. Depending on the algorithm, this
is not always an easy task (and sometimes this is not even possible). Furthermore,
the values that need to be processed in parallel may not be in the required locations
in the memory, or they may be in different registers. In these cases, one may need
instructions such as “shuffling” or “unpacking” to move the values around, which adds
overhead to the computation.

2.2 Timing attacks and constant-time implementa-
tions

Cryptographic schemes are often modeled as a set of algorithms. For example, a
public-key encryption scheme is often modeled as a collection of three algorithms:
key-pair generation, encryption, and decryption. Ideally, the parties that use a cryp-
tographic protocol communicate with each other by exchanging the outputs of the
algorithms. Of course, there can be malicious parties or an external entity interacting
with honest parties, and the scheme is supposed to be secure even if this happens. In
theoretical security proofs the information that an adversary obtains is often modeled
as the data sent by the parties. However, in practice the adversaries are often able
to exploit extra information leaked by the physical implementation of the algorithms.
Attacks based on the knowledge of such information are called side-channel attacks.

In particular, timing is a common type of side-channel information when it de-
pends on secret information. Attacks based on secret-dependent timings are called
timing attacks. As a simple example, the double-and-add algorithm is vulnerable to
timing attacks since the timing depends on the bits of the scalar which is usually a
secret. Unfortunately, timing attacks are not just text-book material; they are actu-
ally used to break practical systems. For example, the well-known Lucky Thirteen
attack [AP13] on TLS is a timing attack.

The obvious way to avoid timing attacks completely is to make sure the run-
time is independent of the secret information. Implementations achieving this are
called constant-time implementations. For cryptographic software, being constant-
time means that secret values should not be used as operands of non-constant-time
instructions. Note that hyperthreading allows adversarial software to measure the
timing for several instructions. Being constant-time also means that there must not
be any secret conditions and secret memory indices. A secret condition can lead to
runtime differences when two branches have different amounts of computation. What
makes the situation worse is the branch prediction mechanism implemented in essen-
tially all CPUs nowadays. Secret memory indices can cause differences in runtime
because memory accesses are slower in case of cache misses. Moreover, there are also
timing variations inside cache; see [Ber04; OST06].

Consider the following C code that uses a secret condition:

if (cond) value = a;
else value = b;

The code has at least two problems: the C-compiler might use branches to implement
the if-statement, causing timing issues due to branch prediction. Furthemore, the

2.3. BITSLICING 9

memory access to a and b depends on the secret condition. The compiler might
compile the code into conditional moves, which is then constant-time. However, this
is not something we can always expect. In order to make the code constant-time, the
trick is to convert the branch into arithmetic:

value = (a & mask) | (b & ~mask);

Here mask is 11...12 if cond is True, and mask is 0 otherwise. How mask should be
computed from cond in constant time depends on the data types, but this is quite
easy in any case. Of course, in practice the situation can be much more complicated
than this simple example, and making a program both constant-time and efficient can
be a challenging task.

2.3 Bitslicing
The idea of bitslicing is to use bitwise logical operations to simulate n independent
copies of a combinational circuit, where n is the width of the registers. Consider a
simple 2-gate circuit

(a⊕ b)� c,

where ⊕ denotes the XOR gate and � denotes the AND gate. The corresponding
bit-sliced C code is simply

value = (A & B) | C;

Suppose A, B, and C are n-bit words, each bit position then simulates the simple
circuit.

In some situations, bitslicing can be useful when we need to carry out some com-
putations that are not well-supported by the CPU. For example, on many CPUs
there are no proper instructions for binary-field arithmetic, and one can simply use
bitslicing to simulate the arithmetic circuits. However, bitslicing also requires a lot
of parallelism as n copies are run in parallel, so it does not always help to accelerate
a program.

Since the number of inputs that are processed at the same time depends on the
register width, it is often preferable to use wide registers for bitslicing. This is why
bitslicing works well with vectorization.

2.4 qhasm
qhasm [Ber07b] is a development tool created by Daniel J. Bernstein to simplify
assembly programming. It provides the following two very useful features for pro-
grammers.

The first feature is a customized instruction syntax, meaning that the user is
able to define the instruction syntax for instructions in the assembly program. This
works by using a so-called machine description file for the target platform. Each
line of a description file defines the syntax for an instruction on the platform. The
programmer, when writing qhasm code (in .q files), uses the syntax defined in the

10 CHAPTER 2. CRYPTOGRAPHIC IMPLEMENTATIONS

description file instead of the assembly syntax that is required by the platform specific
assembler (in .s files). The qhasm code can then be compiled into .s files using qhasm
such that each line of the qhasm code gets translated into the conventional assembly
syntax. This feature is convenient, as the programmer does not have to memorize
the conventional assembly syntax. The programmer can use a more friendly syntax
as in high-level languages. Note that this also improves portability: If two platforms
provide very similar instructions (e.g., unsigned 64-bit integer addition), by defining
the instructions to have the same syntax we can make the qhasm code portable.

The second feature is automatic register allocation. This means that, when writing
qhasm code, the programmer does not have to specify which registers are used as
operands of the instructions. Instead, the programmer uses register variables which
can be named meaningfully. These variables are pretty much like variables in high-
level languages. The programmer declares which type of the registers should be used
for each register variable at the beginning of the qhasm code. The programmer can
then use the variables as operands for compatible instructions, using the self-defined
syntax. When the qhasm code gets compiled, qhasm figures out the lifetime of register
variables and assigns each register variable to a valid register for each instruction if
possible. Note that qhasm does not perform register spilling, so the programmer still
has to limit the working set.

Here is a line in a machine description file for architectures with YMM registers:

r = s ^ t:>r=reg256:<s=reg256:<t=reg256:asm/vxorpd <s,<t,>r:

The line can be viewed as several parts separated by colons. The last part

asm/vxorpd <s,<t,>r

indicates that the actual instruction being used is vxorpd, the 3-operand bitwise-XOR
instruction for YMM registers. The first part

r = s ^ t

indicates the syntax that the programmer uses in qhasm code. The middle parts

>r=reg256:<s=reg256:<t=reg256

indicates that the operands are of type reg256, which means YMM registers, with s
and t as inputs and r as output. To compute the XOR of two YMM registers, y and
z, and store the results in another YMM register, x, the programmer declares register
variables x,y,z as

reg256 x
reg256 y
reg256 z

at the beginning of the qhasm code and then simply writes

x = y ^ z

in the .q file. The qhasm compiler then compiles this code into something like

vxorpd %ymm1, %ymm2, %ymm3

3
The Gao–Mateer additive FFT

Fast Fourier transforms (FFTs), in a broad sense, are special multi-point evaluation
algorithms that take an essentially linear number of operations in the underlying ring.
In the case of multiplicative FFTs, which are the most common type of FFTs, the
evaluation points are the powers of a primitive root of unity. Multiplicative FFTs rely
on the multiplicative structure of the evaluation points to perform efficient multi-point
evaluations.

This chapter presents an “additive FFT” algorithm introduced in 2010 [GM10] by
Gao and Mateer (improving upon previous algorithms by Wang and Zhu in [WZ88],
Cantor in [Can89], and von zur Gathen and Gerhard in [GG96]). This algorithm
evaluates a polynomial at every element of a characteristic-2 field Fq, or more generally
every element of an F2-linear subspace of Fq.

Additive FFTs, instead of exploiting the multiplicative structure of the set of the
evaluation points, make use of the additive structure. This nature makes additive
FFTs more natural than multiplicative FFTs for characteristic-2 fields. The works
presented in Chapter 4 and 6 rely heavily on the Gao–Mateer additive FFT.

Gao and Mateer’s paper has three parts. The first part describes the “Taylor
expansion”, which is essentially a conversion of radix from x to xt +x. The algorithm
is reviewed in Section 3.3 and 3.4. Note that compared to the description in the
Gao–Mateer paper, the description in the sections focuses more on how the algorithm
can be implemented. The second part of the paper describes an additive FFT for
arbitrary F2m , which uses the radix conversion as a subroutine. The algorithm is
reviewed in Section 3.1 and 3.2. The third part describes an additive FFT for F2m ,
where m is a power of 2. Since the algorithm is not used in the works presented in
this thesis, the reader may refer to the original paper if interested.

11

12 CHAPTER 3. THE GAO–MATEER ADDITIVE FFT

3.1 Additive FFT: overview
Let f ∈ Fq[x] where q = 2m. The basic idea of the algorithm is to write f ∈ Fq[x] in
the form f (0)(x2+x)+xf (1)(x2+x) for two half-degree polynomials f (0), f (1) ∈ Fq[x];
this is handled efficiently by the “radix conversion” described below. Let α ∈ Fq. This
form of f shows a large overlap between evaluating f(α) and evaluating f(α + 1).
Specifically, (α+ 1)2 + (α+ 1) = α2 + α, so

f(α) = f (0)(α2 + α) + αf (1)(α2 + α),

f(α+ 1) = f (0)(α2 + α) + (α+ 1)f (1)(α2 + α).

Evaluating both f (0) and f (1) at α2 +α produces both f(α) and f(α+ 1) with just a
few more field operations: multiply the f (1) value by α, add the f (0) value to obtain
f(α), and add the f (1) value to obtain f(α+ 1).

The additive FFT applies this idea recursively. For example, if β2 + β = 1 then
evaluating f at α, α+ 1, α+β, α+β+ 1 reduces to evaluating f (0) and f (1) at α2 +α
and α2 +α+ 1, which in turn reduces to evaluating four polynomials at α4 +α. One
can handle any subspace by “twisting”, as discussed below.

For comparison, a standard multiplicative FFT writes f in the form f (0)(x2) +
xf (1)(x2) (a simple matter of copying alternate coefficients of f), reducing the com-
putation of both f(α) and f(−α) to the computation of f (0)(α2) and f (1)(α2). The
problem in characteristic 2 is that α and −α are the same. The standard workaround
is a radix-3 FFT, writing f in the form f (0)(x3) + xf (1)(x3) + x2f (2)(x3), but this is
considerably less efficient.

Note that the additive FFT, like the multiplicative FFT, is suitable for small
hardware: it can easily be written as a highly structured iterative algorithm rather
than a recursive algorithm, and at a small cost in arithmetic it can be written to use
very few constants.

3.2 Additive FFT: detail
Consider the problem of evaluating a 2m-coefficient polynomial f at all subset sums
(F2-linear combinations) of β1, . . . , βm ∈ Fq: i.e., computing f(0), f(β1), f(β2), f(β1+
β2), etc. Gao and Mateer handle this problem as follows.

If m = 0 then the output is simply f(0). Assume from now on that m ≥ 1.
If βm = 0 then the output is simply two copies of the output for β1, . . . , βm−1.

(The algorithm stated in [GM10] is slightly less general: it assumes that β1, . . . , βm
are linearly independent, excluding this case.) Assume from now on that βm 6= 0.

Assume without loss of generality that βm = 1. To handle the general case,
compute g(x) = f(βmx), and observe that the output for f, β1, β2, . . . , βm is the same
as the output for g, β1/βm, β2/βm, . . . , 1. (This is the “twisting” mentioned above.
Obviously the case βm = 1 is most efficient; the extent to which this case can be
achieved depends on the largest power of 2 dividing lg q (lg denotes logarithm with
base 2).)

Apply the radix conversion described below to find two 2m−1-coefficient polynomi-
als f (0), f (1) ∈ Fq[x] such that f = f (0)(x2 + x) + xf (1)(x2 + x). Recursively evaluate

3.3. RADIX CONVERSION: AN EXAMPLE 13

f (0) at all subset sums of δ1, . . . , δm−1, where δi = β2
i + βi. Also recursively evaluate

f (1) at all subset sums of δ1, . . . , δm−1.
Observe that each subset sum α =

∑
i∈S βi with S ⊆ {1, 2, . . . ,m− 1} has α2 +

α = γ where γ =
∑
i∈S δi. Compute f(α) as f (0)(γ)+αf (1)(γ), and compute f(α+1)

as f (0)(γ) +αf (1)(γ) + f (1)(γ) = f(α) + f (1)(γ). Note that these evaluation points α
and α+ 1 cover all subset sums of β1, β2, . . . , βm, since βm = 1.

3.3 Radix conversion: an example
The radix conversion subroutine converts a polynomial f ∈ Fq[x] from its radix-x
representation

f0 + f1x+ f2x
2 + · · ·

into the radix-(xt +x) representation. Although the algorithm can work for any q, in
this thesis it is assumed q = 2m. Consider a polynomial f of 8 coefficients:

f(x) = f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + f5x

5 + f6x
6 + f7x

7.

In the case of t = 2, the radix conversion aims to find f ′0, f ′1, · · · , f ′7, such that

f(x) = (f ′0 + f ′1x) + (f ′2 + f ′3x)(x2 + x) + (f ′4 + f ′5x)(x2 + x)2 + (f ′6 + f ′7x)(x2 + x)3.

In other words, f is represented as the coordinates (f ′0, f
′
1, · · · , f ′7) with respect to the

basis elements

1, x, x2 + x, x(x2 + x), (x2 + x)2, x(x2 + x)2, (x2 + x)3, x(x2 + x)3.

For the discussion below, it is convenient to view the basis elements as “subset prod-
ucts” of {x, x2 + x, (x2 + x)2}. The radix conversion can then be viewed as a change
of basis from 1, x, x2, . . . , x7 to 1, x, x2 + x, . . . , x(x2 + x)3.

By viewing the radix conversion as a change of basis, with basic linear algebra it
can be derived that

f ′0 = f0,

f ′1 = f1 + f2 + f3 + f4 + f5 + f6 + f7,

f ′2 = f2 + f3 + f4 + f5 + f6 + f7,

f ′3 = f3 + f5 + f7,

f ′4 = f4 + f6,

f ′5 = f5 + f6,

f ′6 = f6 + f7,

f ′7 = f7.

Let v be an array of length 8 which is initialized such that v[i] = fi. The algorithm
described in [GM10] computes f ′i in 8 field additions:

14 CHAPTER 3. THE GAO–MATEER ADDITIVE FFT

v[5]← v[5]⊕ v[7],

v[4]← v[4]⊕ v[6],

v[3]← v[3]⊕ v[5],

v[2]← v[2]⊕ v[4],

v[2]← v[2]⊕ v[3],

v[1]← v[1]⊕ v[2],

v[6]← v[6]⊕ v[7],

v[5]← v[5]⊕ v[6].

To see how this works, it is crucial to see that each

v[i]← v[i]⊕ v[j]

performs a change of basis: the basis element corresponding to v[i] is added to v[j].
Indeed, this holds since cibi + cjbj = (ci + cj)bi + cj(bi + bj), where ci, cj ∈ Fq and
bi, bj ∈ Fq[x].

Therefore, after the first 4 field additions, the basis becomes

1, x, x2, x3, (x4 + x2), x(x4 + x2), x2(x4 + x2), x3(x4 + x2).

Recall that the target basis elements are subset products of {x, x2 + x, (x2 + x)2}.
The first 4 additions handles only the “(x2 + x)2-part” of the change of basis.

The second part of the algorithm handles the (x2 + x) part by performing size-4
radix conversions on the first half (elements that contain no x4 + x2) and the second
half (elements that contain x4 + x2) of the basis. The resulting basis is

1, x, x2 + x, x(x2 + x), (x4 + x), x(x4 + x), (x2 + x)(x4 + x), x(x2 + x)(x4 + x),

which is exactly the target basis. Note that there is no need to handle the “x-part”.
I would like to highlight two properties of the algorithm. The first one is that all

the operations are done in-place. There is no need to allocate more space than the
input/output size. The second property is that all operations performed are of the
form v[i]← v[i]⊕ v[j] where i < j. This interesting property implies that there is no
restriction on the polynomial length. For example, we can perform a radix conversion
for polynomial length 6, by simply omitting the operations that involve array indices
greater than or equal to 6 for the above example. These two properties are in fact
the properties of the algorithm, not just of this example.

3.4 The radix-conversion subroutine
Now we are ready to generalize the algorithm for arbitrary polynomial length n and
radix xt + x (t > 1). Now the goal is, given

f0 + f1x+ · · ·+ fn−1x
n−1,

3.4. THE RADIX-CONVERSION SUBROUTINE 15

def radix_conversion(L, off, n, t):

if n <= t:
return

k = ceil(log(n/t, 2)) - 1

for i in reversed(range(t*2^k, n)):
L[off + i - (t-1)*2^k] += L[off + i]

radix_conversion(L, off, t*2^k, t)
radix_conversion(L, off + t*2^k, n - t*2^k, t)

Figure 3.1: Sage function for the radix conversion for polynomial f(x). At
the beginning of the function call, we have f(x) =

∑n−1
i=0 L[off + i]xi. At the

end of the function call, we have f(x) =
∑dn/te−1
i=0 hi(x)(xt + x)i, where hi =∑min(t−1,n−1 mod t)

j=0 L[off + i · t+ j]xj .

compute h0, h1, . . . , hdn/te−1 such that

f(x) =

dn/te−1∑
i=0

hi(x)(xt + x)i.

Note that we have deg(hi) = n− 1 if i < dn/te− 1, and deg(hdn/te−1) = n− 1 mod t.
In other words, this is a change of basis from 1, x, . . . xn−1 to

1, x, . . . , xn−1, (xt + x), x(xt + x), . . . , xn−1(xt + x), . . . , xn−1 mod t(xt + x)dn/te−1.

In the example in Section 3.3, each target basis element is of the form

xi
k∏
j=0

(x2 + x)2
jej ,

where i ∈ {0, 1} and ej ∈ {0, 1}. For the generic case, we have

xi
k∏
j=0

(xt + x)2
jej ,

where i ∈ {0, 1, . . . , t − 1} and ej ∈ {0, 1}. Following the idea in the example,
the algorithm starts with handling the “(xt + x)2

k

-part” with the largest possible k.
Therefore, k is the unique number such that t · 2k < n ≤ t2k+1.

After finding k, we can proceed to handle (xt + x)2
k

. This is done by performing

v[i− (t− 1)2k]← v[i− (t− 1)2k] + v[i],

16 CHAPTER 3. THE GAO–MATEER ADDITIVE FFT

for i from n−1 down to t2k. The basis then has two parts: the first t2k elements that
do not contain (xt+x)2

k

, and the remaining n− t2k elements that contain (xt+x)2
k

.
Following the idea of the example, we then perform two radix conversions: one for the
first t2k elements and one for the remaining n− t2k elements. Note that no recursive
calls will be triggered when n ≤ t, since in this case the input to the algorithm is the
same as the output. Figure 3.1 shows a Sage implementation for the algorithm.

Gao and Mateer use t = 2 for the additive FFT for arbitrary Fq = F2m . The
additive FFT uses the radix conversion to compute f (0) and f (1) such that f =
f (0)(x2 + x) + xf (1)(x2 + x). It can be seen that the coefficients of f (0) and f (1) are
coefficients of the target basis.

Part II

Binary-field Cryptography

17

4
McBits: fast constant-time
code-based cryptography

This chapter presents new software speed records for public-key cryptography: for
example, more than 400000 decryptions per second at a 280 security level, or 200000
per second at a 2128 security level, on a $215 4-core 3.4GHz Intel Core i5-3570 CPU.
These speeds are fully protected against simple timing attacks, cache-timing attacks,
branch-prediction attacks, etc.: all load addresses, all store addresses, and all branch
conditions are public.

The public-key cryptosystem used here is a code-based cryptosystem with a long
history, a well-established security track record, and even post-quantum security:
namely, Niederreiter’s dual form [Nie86] of McEliece’s hidden-Goppa-code cryptosys-
tem [McE78]. This cryptosystem is well known to provide extremely fast encryp-
tion and reasonably fast decryption. Our main contributions are new decryption
techniques that are (1) much faster and (2) fully protected against timing attacks,
including the attacks by Strenzke in [Str10], [Str11], and [Str12].

The main disadvantage of this cryptosystem is that public keys are quite large:
for example, 64 kilobytes for the 280 security level mentioned above. In some ap-
plications the benefits of very fast encryption and decryption are outweighed by the
costs of communicating and storing these keys. We comment that our work allows
a tradeoff between key size and decryption time: because decryption is so fast we
can afford “combinatorial list decoding”, using many trial decryptions to guess a few
error positions, which allows the message sender to add a few extra error positions
(as proposed by Bernstein, Lange, and Peters in [BLP08]), which increases security
for the same key size, which allows smaller keys for the same security level.

We also present new speed records for generating signatures in the CFS code-
based public-key signature system. Our speeds are an order of magnitude faster than

19

20 CHAPTER 4. MCBITS

previous work. This system has a much larger public key but is of interest for its
short signatures and fast verification.

To bitslice, or not to bitslice. A basic fact in both hardware design and com-
putational complexity theory is that every function from b bits to c bits can be ex-
pressed as a fully unrolled combinatorial circuit consisting solely of two-input NAND
gates. Converting these NAND gates into “logical” CPU instructions produces fully
timing-attack-protected software that computes the same function. One can save a
small constant factor by paying attention to the actual selection of logical instructions
on each CPU: for example, some CPUs offer single-cycle instructions as complex as
a MUX gate. Even better, the same CPU instructions naturally operate on w-bit
words in parallel, so in the same time they carry out w separate bitsliced copies of
the same computation; common values of w on current CPUs include 8, 16, 32, 64,
128, and 256. For a server bottlenecked by cryptographic computations there is no
trouble finding 256 separate computations to carry out in parallel.

However, this approach makes only very limited use of the instruction set of a
typical CPU, and it is completely unclear that this approach can produce competi-
tive speeds for typical cryptographic computations. Almost all cryptographic software
takes advantage of more complicated CPU instructions: for example, the fastest previ-
ous software [BS08] for McEliece/Niederreiter decryption uses input-dependent table
lookups for fast field arithmetic, uses input-dependent branches for fast root-finding,
etc.

There are a few success stories for bitsliced cryptographic computations, but those
stories provide little reason to believe that bitslicing is a good idea for code-based
cryptography:

• Biham in [Bih97] achieved a 2× speedup for DES on an Alpha CPU using bit-
slicing with w = 64. Non-bitsliced implementations of DES used only 64-entry
table lookups and were slowed down by frequent bit-level rearrangements. For
comparison, code-based cryptography naturally uses much larger tables without
such obvious slowdowns.

• Bernstein in [Ber09a], improving upon previous work by Aoki, Hoshino, and
Kobayashi in [AHK+01], set speed records for binary-field ECC on a Core 2 CPU
using bitslicing with w = 128. This paper took advantage of fast multiplication
techniques for a large binary field, specifically F2251 . For comparison, code-
based cryptography uses medium-size fields (such as F211) with relatively little
possibility of savings from fast multiplication.

• Käsper and Schwabe in [KS09], improving upon previous work by Matsui and
Nakajima in [MN07], achieved a 1.4× speedup for AES on a Core 2 CPU using
bitslicing with w = 128. Non-bitsliced implementations of AES use only 256-
entry table lookups.

• Bos, Kleinjung, Niederhagen, and Schwabe in [BKN+10] optimized both bit-
sliced and non-bitsliced implementations of an ECC attack on a Cell CPU, and
found that bitslicing was 1.5× faster. Like [Ber09a], this computation took

21

advantage of fast multiplication techniques for a large binary field, specifically
F2131 .

• Matsuda and Moriai in [MM12] reported fast bitsliced implementations of the
PRESENT and Piccolo ciphers on recent Intel CPUs. Non-bitsliced implemen-
tations of these ciphers use only 16-entry table lookups.

To summarize, all of these examples of bitsliced speed records are for small S-boxes
or large binary fields, while code-based cryptography relies on medium-size fields and
seems to make much more efficient use of table lookups.

Despite this background we use bitslicing for the critical decoding step inside
McEliece/Niederreiter decryption. Our central observation is that this decoding step
is bottlenecked not by separate operations in a medium-size finite field, but by larger-
scale polynomial operations over that finite field; state-of-the-art approaches to those
polynomial operations turn out to interact very well with bitslicing. Our decoding
algorithms end up using a surprisingly small number of bit operations, and as a
result a surprisingly small number of cycles, setting new speed records for code-based
cryptography, in some cases an order of magnitude faster than previous work.

The most important steps in our decoding algorithm are an “additive FFT” for
fast root computation (Section 4.2) and a transposed additive FFT for fast syndrome
computation (Section 4.3). It is reasonable to predict that the additive FFT will also
reduce the energy consumed by hardware implementations of code-based cryptogra-
phy. We also use a sorting network to efficiently simulate secret-index lookups in
a large table (Section 4.4); this technique may be of independent interest for other
computations that need to be protected against timing attacks.

Results: the new speeds. To simpify comparisons we have chosen to report
benchmarks on a very widely available CPU microarchitecture, specifically the Ivy
Bridge microarchitecture from Intel, which carries out one 256-bit vector arithmetic
instruction per cycle. We emphasize, however, that our techniques are not limited
to this platform. Older Intel and AMD CPUs perform two or three 128-bit vector
operations per cycle; common tablet/smartphone ARMs with NEON perform one
or two 128-bit vector operations per cycle (exploited by Bernstein and Schwabe in
[BS12], although not with bitslicing); the same techniques will also provide quite
respectable performance using 64-bit registers, 32-bit registers, etc.

Table 4.1 reports our decoding speeds for various code parameters. Decoding
time here is computed as 1/256 of the total latency measured for 256 simultaneous
decoding operations. Decryption time is slightly larger, because it requires hashing,
checking a MAC, and applying a secret-key cipher; see Section 4.5. We comment
that the software supports a separate secret key for each decryption (although many
applications do not need this), and that the latency of 256 decryptions is so small as
to be unnoticeable in typical applications.

We use the usual parameter notations for code-based cryptography: q = 2m is
the field size, n is the code length, t is the number of errors corrected, and k =
n − mt. “Bytes” is the public-key size dk(n− k)/8e; the rows are sorted by this
column. “Total” is our cycle count (measured by the Ivy Bridge cycle counter with
Turbo Boost and hyperthreading disabled) for decoding, including overhead beyond

22 CHAPTER 4. MCBITS

Our speeds
q = 2m n t k bytes sec perm synd key eq root perm total [BS08]

2048 2048 27 1751 65006 81 3333 8414 3120 5986 3199 24051
2048 1744 35 1359 65402 83 3301 9199 5132 6659 3145 27434
2048 2048 32 1696 74624 87 3326 9081 4267 6699 3172 26544 445599
2048 2048 40 1608 88440 95 3357 9412 6510 6852 3299 29429 608172
4096 4096 21 3844 121086 87 8661 17496 2259 11663 8826 48903 288649
4096 2480 45 1940 130950 105 8745 21339 9276 14941 8712 63012
4096 2690 56 2018 169512 119 8733 22898 14199 16383 8789 71000
4096 4096 41 3604 221646 129 8622 20846 7714 14794 8520 60493 693822
8192 8192 18 7958 232772 91 23331 49344 3353 37315 23339 136679 317421
4096 3408 67 2604 261702 146 8983 24308 19950 17790 8686 79715
8192 8192 29 7815 368282 128 22879 56336 7709 44727 22753 154403 540952
16384 16384 15 16174 424568 90 60861 99360 2337 79774 60580 302909 467818
8192 4624 95 3389 523177 187 22693 76050 70696 59409 22992 251838
8192 6624 115 5129 958482 252 23140 83127 102337 65050 22971 296624
8192 6960 119 5413 1046739 263 23020 83735 109805 66453 23091 306102

Table 4.1: Number of cycles for decoding for various code parameters. See text
for description.

vector operations. This cycle count is partitioned into five stages: “perm” for initial
permutation (Section 4.4), “synd” for syndrome computation (Section 4.3), “key eq”
for solving the key equation (standard Berlekamp–Massey), “root” for root-finding
(Section 4.2), and “perm” again for final permutation.

Some of the parameters in this table are taken from [BLP08], which says that
these parameters were designed to optimize security levels subject to key sizes of 216,
217, 218, 219, and 220 bytes. Some parameters are from [HG12]. Some parameters are
from [BS08], and for comparison we repeat the Core 2 cycle counts reported in [BS08].
(We comment that the “cycles/byte” in [BS08] are cycles divided by (k+

⌊
lg
(
n
t

)⌋
)/8.)

Our speedups are much larger than any relevant differences between the Core 2 and
the Ivy Bridge that we used for benchmarking. “Sec” is the approximate security
level reported by the https://bitbucket.org/cbcrypto/isdfq script from Peters
[Pet10], rounded to the nearest integer. Figure 4.1 shows the relationship between
the columns “sec”, “bytes”, and “total”.

Some of the parameter choices from [BS08] are uninteresting in all of our metrics:
they are beaten by other parameter choices in key size, speed, and security level.
For these parameter choices we mark our cycle count in gray. Note that we have
taken only previously published parameter sets; in particular, we have not searched
for parameters that sacrifice key size to improve speed for the same security level, and
we do not use list decoding.

Previous speeds for public-key cryptography. The eBATS benchmarking sys-
tem [BL] includes seven public-key encryption systems: mceliece, a McEliece im-
plementation from Biswas and Sendrier (with n = 2048 and t = 32, slightly above
a 280 security level); ntruees787ep1, an NTRU implementation (2256 security) from
Mark Etzel; and five sizes of RSA starting from ronald1024 (280 security). None
of these implementations claim to be protected against timing attacks. When we
published [BCS13] in 2013, on h9ivy, an Ivy Bridge CPU (Intel Core i5-3210M), the

https://bitbucket.org/cbcrypto/isdfq

23

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

0k 200k 400k 600k 800k 1000k 1200k

to
ta

l

bytes

80 100 120 140 160 180 200 220 240 260 280
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

sec

Figure 4.1: Relationship between the columns “sec”, “bytes”, and “total” in Ta-
ble 4.1. The blue dots use the cycle counts achieved by [BS08].

fastest encryption (for 59-byte messages) was 46940 cycles for ronald1024 followed
by 61440 cycles for mceliece, several more RSA results, and finally 398912 cycles
for ntruees787ep1. The fastest decryption was 700512 cycles for ntruees787ep1,
followed by 1219344 cycles for mceliece and 1340040 cycles for ronald1024. The
encryption time now on eBATS is 45984 cycles for ronald1024, 73092 cycles for
mceliece, and 388428 cycles for ntruees787ep1; the decryption time now is 678736
cycles for ntruees787ep1, 1130908 cycles for mceliece, and then 1313324 cycles for
ronald1024.

A 2008 paper [BS08] by Biswas and Sendrier reported better decryption perfor-
mance, 445599 cycles on a Core 2 for n = 2048 and t = 32. Sendrier said in 2013
that he had better performance, below 300000 cycles. However, our speed of 26544
cycles for n = 2048 and t = 32 improves upon this by an order of magnitude, and
also includes full protection against timing attacks.

eBATS also includes many Diffie–Hellman systems. One can trivially use Diffie–
Hellman for public-key encryption; the decryption time is then the Diffie–Hellman
shared-secret time plus some fast secret-key cryptography, and the encryption time is
the same plus the Diffie–Hellman key-generation time. When we published [BCS13]
in 2013, the fastest Diffie–Hellman shared-secret time reported from h9ivy was 77468
cycles (not side-channel protected), set by gls254 from Oliveira, López, Aranha, and
Rodríguez-Henríquez; see [OLA+14; OLA+13]. The second fastest was 182632 cycles
(side-channel protected), set by the curve25519 implementation from Bernstein, Duif,
Lange, Schwabe, and Yang in [BDL+11]. Now the fastest result is 76212 cycles
set by gls254, followed by 88448 cycles by kummer (side-channel protected) from
Bernstein, Chuengsatiansup, Lange and Schwabe; see [BCL+14]. Also, the record
for curve25519 is now 156995 cycles set by the software Sandy2x from Chou; see
Chapter 8 or equivalently, [Cho15]. Our software takes just 60493 cycles (side-channel
protected) for decryption with n = 4096 and t = 41 at the same 2128 security level.

We have found many claims that NTRU is orders of magnitude faster than RSA
and ECC, but we have also found no evidence that NTRU can match our speeds. The
fastest NTRU decryption report that we have found is from Hermans, Vercauteren,

24 CHAPTER 4. MCBITS

and Preneel in [HVP10]: namely, 24331 operations per second on a GTX 280 GPU.
However, the recent “new hope” paper [ADP+15] for lattice-based post-quantum key-
exchange reports 23988 Haswell cycles (side-channel protected) for computing a shared
secret.

Heyse and Güneysu in [HG12] report 17012 Niederreiter decryption operations per
second on a Virtex6-LX240T FPGA for n = 2048 and t = 27. The implementation
actually uses only 10% of the FPGA slices, so presumably one can run several copies
of the implementation in parallel without running into place-and-route difficulties. A
direct speed comparison between such different platforms does not convey much infor-
mation, but we point out several ways that our decryption algorithm improves upon
the algorithm used in [HG12]: we use an additive FFT rather than separate evalua-
tions at each point (“Chien search”); we use a transposed additive FFT rather than
applying a syndrome-conversion matrix; we do not even need to store the syndrome-
conversion matrix, the largest part of the data stored in [HG12]; and we use a simple
hash (see Section 4.5) rather than a constant-weight-word-to-bit-string conversion.

4.1 Field arithmetic
We construct the finite field F2m as F2[x]/f , where f is a degree-m irreducible poly-
nomial. We use trinomial choices of f when possible. We use pentanomials for F213

and F216 .

4.1.1 Addition
Addition in F2m is simply a coefficient-wise xor and costs m bit operations.

4.1.2 Multiplication
A field multiplication is composed of a multiplication in F2[x] and reduction modulo
f . We follow the standard approach of optimizing these two steps separately, and
we use standard techniques for the second step. Note, however, that this two-step
optimization is not necessarily optimal, even if each of the two steps is optimal.

For the first step we started from Bernstein’s straight-line algorithms from http://
binary.cr.yp.to/m.html. Themth algorithm is a sequence of XORs and ANDs that
multiplies twom-coefficient binary polynomials. The web page shows algorithms form
as large as 1000; for McEliece/Niederreiter we use m between 11 and 16, and for CFS
(Section 4.6) we usem = 20. These straight-line algorithms are obtained by combining
different multiplication techniques as explained in [Ber09a]; for 10 ≤ m ≤ 20 the
algorithms use somewhat fewer bit operations than schoolbook multiplication. We
applied various scheduling techniques (in some cases sacrificing some bit operations)
to improve cycle counts.

4.1.3 Squaring
Squaring of a polynomial does not require any bit operations. The square of an
m-coefficient polynomial f =

∑m−1
i=0 aix

i is simply f2 =
∑m−1
i=0 aix

2i. The only bit

http://binary.cr.yp.to/m.html
http://binary.cr.yp.to/m.html

4.2. FINDING ROOTS: THE GAO–MATEER ADDITIVE FFT 25

operations required for squaring in F2m are thus those for reduction. Note that half of
the high coefficients are known to be zero; reduction after squaring takes only about
half the bit operations of reduction after multiplication.

4.1.4 Inversion
We compute reciprocals in F2m as (2m − 2)nd powers. For F220 we use an addition
chain consisting of 19 squarings and 6 multiplications. For smaller fields we use similar
addition chains.

4.2 Finding roots: the Gao–Mateer additive FFT
This section considers the problem of finding all the roots of a polynomial over a
characteristic-2 finite field. This problem is parametrized by a field size q = 2m where
m is a positive integer. The input is a sequence of coefficients c0, c1, . . . , ct ∈ Fq of
a polynomial f = c0 + c1x + · · · + ctx

t ∈ Fq[x] of degree at most t. The output is a
sequence of q bits bα indexed by elements α ∈ Fq in a standard order, where bα = 0
if and only if f(α) = 0.

4.2.1 Application to decoding
Standard decoding techniques have two main steps: finding an “error-locator polyno-
mial” f of degree at most t, and finding all the roots of the polynomial in a specified
finite field Fq. In the McEliece/Niederreiter context it is traditional to take the field
size q as a power of 2 and to take t on the scale of q/ lg q, typically between 0.1q/ lg q
and 0.3q/ lg q; a concrete example is (q, t) = (2048, 40). In cases of successful decryp-
tion this polynomial will in fact have exactly t roots at the positions of errors added
by the message sender.

4.2.2 Multipoint evaluation
In coding theory, and in code-based cryptography, the most common way to solve the
root-finding problem is to simply try each possible root: for each α ∈ Fq, evaluate
f(α) and then OR together the bits of f(α) in a standard basis, obtaining 0 if and
only if f(α) = 0.

The problem of evaluating f(α) for every α ∈ Fq, or more generally for every α in
some set S, is called multipoint evaluation. Separately evaluating f(α) by Horner’s
rule for every α ∈ Fq costs qt multiplications in Fq and qt additions in Fq; if t is
essentially linear in q (e.g., q or q/ lg q) then the total number of field operations is
essentially quadratic in q. “Chien search” is an alternative method of evaluating each
f(α), also using qt field additions and qt field multiplications.

There is an extensive literature on more efficient multipoint-evaluation techniques.
Most of these techniques (for example, the “dcmp” method recommended by Strenzke
in [Str12]) save at most small constant factors. Some of them are much more scalable:
in particular, a 40-year-old FFT-based algorithm [BM74] by Borodin and Moenck
evaluates an n-coefficient polynomial at any set of n points using only n1+o(1) field

26 CHAPTER 4. MCBITS

operations. On the other hand, the conventional wisdom is that FFTs are particularly
clumsy for characteristic-2 fields, and in any case are irrelevant to the input sizes that
occur in cryptography.

For multipoint evaluation we use the Gao–Mateer additive FFT algorithm decribed
in Chapter 3. We show some new improvements below, which are specialized for the
context of decoding.

4.2.3 FFT improvement: 1-coefficient polynomials

Gao and Mateer show that for q = 2m this additive-FFT algorithm uses 2q lg q−2q+1
multiplications in Fq and (1/4)q(lg q)2 + (3/4)q lg q − (1/2)q additions in Fq. The
βm = 1 optimization removes many multiplications when it is applicable.

We do better by generalizing from one parameter to two, separating the maximum
polynomial degree t from the number 2m of evaluation points. Our main interest is
not in the case t+ 1 = 2m, but in the case that t is smaller than 2m by a logarithmic
factor.

The adjustments to the algorithm are straightforward. We begin with a polynomial
having t+ 1 coefficients. If t = 0 then the output is simply 2m copies of f(0), which
we return immediately without any additions or multiplications. If t ≥ 1 then we
continue as in the algorithm in Section 3.2; f (0) has d(t+ 1)/2e coefficients, and
f (1) has b(t+ 1)/2c coefficients. Note that t + 1 and 2m each drop by a factor of
approximately 2 in the recursive calls.

It is of course possible to zero-pad a (t+1)-coefficient polynomial to a 2m-coefficient
polynomial and apply the original algorithm, but this wastes considerable time ma-
nipulating coefficients that are guaranteed to be 0.

4.2.4 FFT improvement: 2-coefficient and 3-coefficient poly-
nomials

We further accelerate the case that t is considerably smaller than 2m, replacing many
multiplications with additions as follows.

Recall that the last step of the algorithm involves 2m−1 multiplications of the
form αf (1)(γ). Here α runs through all subset sums of β1, β2, . . . , βm−1, and γ =
α2 − α. The multiplication for α = 0 can be skipped but all other multiplications
seem nontrivial.

Now consider the case that t ∈ {1, 2}. Then f (1) has just 1 coefficient, so the
recursive evaluation of f (1) produces 2m−1 copies of f (1)(0), as discussed above. The
products αf (1)(γ) = αf (1)(0) are then nothing more than subset sums of β1f (1)(0),
β2f

(1)(0), . . . , βm−1f
(1)(0). Instead of 2m−1 − 1 multiplications we use just m − 1

multiplications and 2m−1 −m additions.

4.2.5 Results

Table 4.2 displays the speed of the additive FFT, including these improvements, for
an illustrative sample of field sizes q = 2m and degrees t taken from our applications
to decoding.

4.2. FINDING ROOTS: THE GAO–MATEER ADDITIVE FFT 27

m = 11 t 27 32 35 40 53 63 69 79
adds 5.41 5.60 5.75 5.99 6.47 6.69 6.84 7.11
mults 1.85 2.12 2.13 2.16 2.40 2.73 2.77 2.82

m = 12 t 21 41 45 56 67 81 89 111 133
adds 5.07 6.01 6.20 6.46 6.69 7.04 7.25 7.59 7.86
mults 1.55 2.09 2.10 2.40 2.64 2.68 2.70 2.99 3.28

m = 13 t 18 29 35 57 95 115 119 189 229 237
adds 4.78 5.45 5.70 6.44 7.33 7.52 7.56 8.45 8.71 8.77
mults 1.52 1.91 2.04 2.38 2.62 2.94 3.01 3.24 3.57 3.64

Table 4.2: Number of field operations/point in the additive FFT for various
field sizes q = 2m and various parameters t. The total number of field additions
is q times “adds”; the total number of field multiplications is q times “mults”.
For comparison, Horner’s rule uses qt additions and qt multiplications; i.e., for
Horner’s rule, “adds” and “mults” are both t. Chien search also uses qt additions
and qt multiplications.

4.2.6 Other algorithms

We briefly mention a few alternative root-finding algorithms.

In the standard McEliece/Niederreiter context, f is known in advance to have
deg f = t distinct roots (for valid ciphertexts). However, in the signing context of
Section 4.6 and the “combinatorial list decoding” application mentioned in Section 4.5,
one frequently faces, and wants to discard, polynomials f that do not have t distinct
roots. One can usually save time by checking whether xq − x mod f = 0 before
applying a root-finding algorithm. There are other applications where one wants
all Fq-rational roots over Fq of a polynomial f that has no reason to have as many
as deg f distinct roots; for such applications it is usually helpful to replace f with
gcd {f, xq − x}.

There are other root-finding techniques (and polynomial-factorization techniques)
that scale well to very large finite fields Fq when t remains small, such as Berlekamp’s
trace algorithm [Ber70]. If t is as large as q then all of these techniques are obviously
slower than multipoint evaluation with the additive FFT, but our experiments indicate
that the t cutoff is above the range used in code-based signatures (see Section 4.6) and
possibly within the range used in code-based encryption. Our main reason for not
using these methods is that they involve many data-dependent conditional branches;
as far as we can tell, all of these methods become much slower when the branches are
eliminated.

There is a generalization of the additive FFT that replaces x2 − x with xt − x
if q is a power of t. Gao and Mateer state this generalization only in the extreme
case that lg q and lg t are powers of 2; we are exploring the question of whether the
generalization produces speedups for other cases.

28 CHAPTER 4. MCBITS

4.3 Syndrome computation: transposing the addi-
tive FFT

Consider the problem of computing the vector (
∑
α rα,

∑
α rαα, . . . ,

∑
α rαα

d), given
a sequence of q elements rα ∈ Fq indexed by elements α ∈ Fq, where q = 2m. This
vector is called a “syndrome”. One can compute

∑
α rαα

i separately for each i with
approximately 2dq field operations. We do better in this section by merging these
computations across all the values of i.

4.3.1 Application to decoding

The standard Berlekamp decoding algorithm computes the syndrome shown above,
and then solves a “key equation” to compute the error-locator polynomial mentioned
in Section 4.2. When Berlekamp’s algorithm is applied to decoding Goppa codes using
a degree-t polynomial g as described in Section 4.5, the inputs rα are a received word
divided by g(α)2, and d is 2t − 1. Many other decoding algorithms begin with the
same type of syndrome computation, often with d only half as large.

Note that there are only n ≤ q bits in the received word. The (d + 1)m = 2tm
syndrome bits are F2-linear functions of these n input bits. Standard practice in the
literature is to precompute the corresponding 2tm×n matrix (or a tm×n matrix for
Patterson’s algorithm), and to multiply this matrix by the n input bits to obtain the
syndrome. These 2tmn bits are by far the largest part of the McEliece/Niederreiter
secret key. Our approach eliminates this precomputed matrix, and also reduces the
number of bit operations once t is reasonably large.

4.3.2 Syndrome computation as the transpose of multipoint
evaluation

Notice that the syndrome (c0, c1, . . . , cd) is an Fq-linear function of the inputs rα. The
syndrome-computation matrix is a “transposed Vandermonde matrix”: the coefficient
of rα in ci is αi.

For comparison, consider the multipoint-evaluation problem stated in the previous
section, producing f(α) for every α ∈ Fq given a polynomial f = c0 +c1x+ · · ·+cdx

d.
The multipoint-evaluation matrix is a “Vandermonde matrix”: the coefficient of ci in
f(α) is αi.

To summarize, the syndrome-computation matrix is exactly the transpose of the
multipoint-evaluation matrix. We show below how to exploit this fact to obtain a fast
algorithm for syndrome computation.

4.3.3 Transposing linear algorithms

A linear algorithm expresses a linear computation as a labeled acyclic directed graph.
Each edge in the graph is labeled by a constant (by default 1 if no label is shown),
multiplies its incoming vertex by that constant, and adds the product into its outgoing
vertex; some vertices without incoming edges are labeled as inputs, and some vertices
without outgoing edges are labeled as outputs. Figure 4.2 displays two examples: a

4.3. SYNDROME COMPUTATION 29

in1 = a

$$

out1 = a+ 4b in1 = a0

$$

b0 // a0b0

$$

// out1 = a0b0

a+ 4b

::

10

$$

a0 + a1
b0+b1// out2 = a0b1 + a1b0

in2 = b

4
::

// out2 = 10a+ 41b in2 = a1

::

b1 // a1b1

::

// out3 = a1b1

Figure 4.2: An R-linear algorithm to compute a, b 7→ a + 4b, 10a + 41b using
constants 4, 10, and an F2m -linear algorithm to compute a0, a1 7→ a0b0, a0b1 +
a1b0, a1b1 using constants b0, b0 + b1, b1.

out1 = c+ 10d in1 = c

zz

out1 = b0c0 + b1c1 c0 + c1
b0

oo in1 = c0oo

c+ 10d

dd

4zz

(b0 + b1)c1

dd

zz

in2 = c1
b0+b1

oo

dd

zz
out2 = 4c+ 41d in2 = d

10

dd

oo out2 = b0c1 + b1c2 c1 + c2
b1

oo in3 = c2oo

Figure 4.3: Transposing the algorithms in Figure 4.2.

computation of a+4b, 10a+41b given a, b, using constants 4 and 10; and a computation
of a0b0, a0b1 + a1b0, a1b1 given a0, a1, using constants b0, b0 + b1, b1.

The transposition principle states that if a linear algorithm computes a matrix
M (i.e., M is the matrix of coefficients of the inputs in the outputs) then reversing
the edges of the linear algorithm, and exchanging inputs with outputs, computes
the transpose of M . This principle was introduced by Bordewijk in [Bor56], and
independently by Lupanov in [Lup56] for the special case of Boolean matrices. This
reversal preserves the number of multiplications (and the constants used in those
multiplications), and preserves the number of additions plus the number of nontrivial
outputs, as shown by Fiduccia in [Fid73, Theorems 4 and 5] after preliminary work
in [Fid72].

For example, Figure 4.3 displays the reversals of the linear algorithms in Figure 4.2.
The first reversal computes c+ 10d, 4c+ 41d given c, d. The second reversal computes
b0c0 + b1c1, b0c1 + b1c2 given c0, c1, c2.

4.3.4 Transposing the additive FFT
In particular, since syndrome computation is the transpose of multipoint evaluation,
reversing a fast linear algorithm for multipoint evaluation produces a fast linear al-
gorithm for syndrome computation.

We started with our software for the additive FFT, including the improvements
discussed in Section 4.2. This software is expressed as a sequence of additions in Fq

30 CHAPTER 4. MCBITS

and multiplications by various constants in Fq. We compiled this sequence into a
directed acyclic graph, automatically renaming variables to avoid cycles. We then
reversed the edges in the graph and converted the resulting graph back into software
expressed as a sequence of operations in Fq, specifically C code with vector intrinsics.

This procedure produced exactly the desired number of operations in Fq but was
unsatisfactory for two reasons. First, there were a huge number of nodes in the graph,
producing a huge number of variables in the final software. Second, this procedure
eliminated all of the loops and functions in the original software, producing a huge
number of lines of code in the final software. Consequently the C compiler, gcc,
became very slow as m increased and ran out of memory around m = 13 or m = 14,
depending on the machine we used for compilation.

We then tried the qhasm register allocator [Ber07b], which was able to produce
working code for larger values ofm using the expected number of variables (essentially
q), eliminating the first problem. We then wrote our own faster straight-line register
allocator. We reduced code size by designing a compact format for the sequence of
Fq operations and interpreting the sequence at run time. There was, however, still
some performance overhead for this interpreter.

We considered more advanced compilation techniques to reduce code size: the
language introduced in [FS10], for example, and automatic compression techniques
to recognize repeated subgraphs of the reversed graph. In the end we eliminated the
compiler, analyzed the interaction of transposition with the structure of the additive
FFT, and designed a compact transposed additive FFT algorithm.

The original additive FFT algorithm A has steps of the form B,A1, A2, C, where
A1 and A2 are recursive calls. The transpose Aᵀ has steps Cᵀ, Aᵀ

2 , A
ᵀ
1 , B

ᵀ, preserving
the recursions. The main loop in the additive FFT takes a pair of variables v, w
(containing f (0)(α2 + α) and f (1)(α2 + α) respectively), operates in place on those
variables (producing f(α) and f(α+ 1) respectively), and then moves on to the next
pair of variables; transposition preserves this loop structure and simply transposes
each operation. This operation replaces v by v+w · α and then replaces w by w+ v;
the transposed operation replaces v by v + w and then replaces w by w + v · α.

4.3.5 Improvement: transposed additive FFT on scaled bits

Recall that, in the decoding context, the inputs are not arbitrary field elements: rα
is a received bit divided by g(α)2. We take advantage of this restriction to reduce the
number of bit operations in syndrome computation.

The first step of the transposed additive FFT operates on each successive pair
of inputs v, w as described above: it replaces v by v + w and then replaces w by
w + v · α. Assume that before this v, w are computed as scaled bits bv · sv, bw · sw,
where bv, bw ∈ F2 are variables and sv, sw ∈ Fq are constants. Computing bv · sv
and bw · sw takes 2m bit operations; computing w · α takes one field multiplication;
computing v+w ·α takes m bit operations; computing w+ v takes m bit operations.

If the multiplication by α takes more than 2m bit operations then we do better by
computing the final v and w directly as bv · sv + bw · sw and bv · sv ·α+ bw · sw · (α+ 1)
respectively. This takes just 6m bit operations: we precompute sv, sw, sv ·α, sw ·(α+1).

The same idea can be used for more levels of recursion, although the number of

4.4. SECRET PERMUTATIONS 31

required constants grows rapidly. Using this idea for all levels of recursion is tanta-
mount to the standard approach mentioned earlier, namely precomputing a 2tm× n
matrix.

4.4 Secret permutations without secret array indices:
odd-even sorting

Section 4.2 presented an algorithm that, given a polynomial f , outputs bits bα for
all α ∈ Fq in a standard order (for example, lexicographic order using a standard
basis), where bα = 0 if and only if f(α) = 0. However, in the McEliece/Niederreiter
context, one actually has the elements (α1, α2, . . . , αq) of Fq in a secret order (or, more
generally, (α1, . . . , αn) for some n ≤ q), and one needs to know for each i whether
f(αi) = 0, i.e., whether bαi

= 0. These problems are not exactly the same: one must
apply a secret permutation to the q bits output by Section 4.2. Similar comments
apply to Section 4.3: one must apply the inverse of the same secret permutation to
the q bits input to Section 4.3.

This section considers the general problem of computing a permuted q-bit string
bπ(0), bπ(1), . . . , bπ(q−1), given a q-bit string b0, b1, . . . , bq−1 and a sequence of q distinct
integers π(0), π(1), . . . , π(q− 1) in {0, 1, . . . , q − 1}. Mapping the set {0, 1, . . . , q − 1}
to Fq in a standard order, and viewing αi+1 as either π(i) or π−1(i), covers the
problems stated in the previous paragraph.

The obvious approach is to compute bπ(i) for i = 0, then for i = 1, etc. We
require all load and store addresses to be public, so we cannot simply use the CPU’s
load instruction (with appropriate masking) to pick up the bit bπ(i). Bitslicing can
simulate this load instruction, essentially by imitating the structure of physical RAM
hardware, but this is very slow: it means performing a computation involving every
element of the array. We achieve much better bitslicing speeds by batching all of the
required loads into a single large operation as described below.

4.4.1 Sorting networks

A “sorting network” uses a sequence of “comparators” to sort an input array S. A
comparator is a data-independent pair of indices (i, j); it swaps S[i] with S[j] if
S[i] > S[j]. This conditional swap is easily expressed as a data-independent sequence
of bit operations: first some bit operations to compute the condition S[i] > S[j], then
some bit operations to overwrite (S[i], S[j]) with (min(S[i], S[j]),max(S[i], S[j])).

There are many sorting networks in the literature. We use a standard “odd-
even” sorting network by Batcher [Bat68], which uses exactly (m2 −m+ 4)2m−2 − 1
comparators to sort an array of 2m elements. This is more efficient than other sorting
networks such as Batcher’s bitonic sort [Bat68] or Shell sort [She59]. The odd-even
sorting network is known to be suboptimal when m is very large (see [AKS83]), but
we are not aware of noticeably smaller sorting networks for the range of m used in
code-based cryptography.

32 CHAPTER 4. MCBITS

4.4.2 Precomputed comparisons

We treat this section’s bπ(i) computation as a sorting problem: specifically, we use
a sorting network to sort the key-value pairs (π−1(0), b0), (π−1(1), b1), . . . accord-
ing to the keys. Note that computing (π−1(0), π−1(1), . . .) from (π(0), π(1), . . .) can
be viewed as another sorting problem, namely sorting the key-value pairs (π(0), 0),
(π(1), 1) , . . . according to the keys.

We do better by distinguishing between the b-dependent part of this computa-
tion and the b-independent part of this computation: we precompute everything
b-independent before b is known. In the context of code-based cryptography, the
permutations π and π−1 are known at key-generation time and are the same for every
use of the secret key. The only computations that need to be carried out for each
decryption are computations that depend on b.

Specifically, all of the comparator conditions S[i] > S[j] depend only on π, not
on b; the conditional swaps of π values also depend only on π, not on b. We record
the (m2 − m + 4)2m−2 − 1 comparator conditions obtained by sorting π, and then
apply those conditional swaps to the b array once b is known. Conditionally swapping
b[i] with b[j] according to a bit c uses only 4 bit operations (y ← b[i] ⊕ b[j]; y ← cy;
b[i]← b[i]⊕ y; b[j]← b[j]⊕ y), for a total of 4((m2−m+ 4)2m−2− 1) bit operations.
Note that applying the same conditional swaps in reverse order applies the inverse
permutation.

4.4.3 Permutation networks

A “permutation network” (or “rearrangeable permutation network” or “switching net-
work”) uses a sequence of conditional swaps to apply an arbitrary permutation to an
input array S. Here a conditional swap is a data-independent pair of indices (i, j)
together with a permutation-dependent bit c; it swaps S[i] with S[j] if c = 1.

A sorting network, together with a permutation, produces a limited type of per-
mutation network in which the condition bits are computed by data-independent com-
parators; but there are other types of permutation networks in which the condition
bits are computed in more complicated ways. In particular, the Beneš permutation
network [Ben65] uses only 2m(m − 1/2) conditional swaps to permute 2m elements
for m ≥ 1.

The main challenge in using the Beneš permutation network is to compute the
condition bits in constant time; see Section 4.5 for further discussion of timing-attack
protection for key generation. We have completed software for this condition-bit
computation but have not yet integrated it into our decoding software.

4.4.4 Alternative: random condition bits

In code-based cryptography we choose a permutation at random; we then compute the
condition bits for a permutation network, and later (during each decryption) apply
the conditional swaps. An alternative is to first choose a random sequence of condition
bits for a permutation network, then compute the corresponding permutation, and
later apply the conditional swaps.

4.5. A COMPLETE CODE-BASED CRYPTOSYSTEM 33

This approach reduces secret-key size but raises security questions. By definition
a permutation network can reach every permutation, but perhaps it is much more
likely to reach some permutations than others. Perhaps this hurts security. Perhaps
not; perhaps a nearly uniform distribution of permutations is unnecessary; perhaps
it is not even necessary to reach all permutations; perhaps a network half the size
of the Beneš network would produce a sufficiently random permutation; but these
speculations need security analysis. Our goals in this chapter are more conservative,
so we avoid this approach: we are trying to reduce, not increase, the number of
questions for cryptanalysts.

4.5 A complete code-based cryptosystem
Code-based cryptography is often presented as encrypting fixed-length plaintexts.
McEliece encryption multiplies the public key (a matrix) by a k-bit message to produce
an n-bit codeword and adds t random errors to the codeword to produce a ciphertext.
The Niederreiter variant (which has several well-known advantages, and which we
use) multiplies the public key by a weight-t n-bit message to produce an (n− k)-bit
ciphertext. If the t-error decoding problem is difficult for the public code then both
of these encryption systems are secure against passive attackers who intercept valid
ciphertexts for random plaintexts.

What users want, however, is to be able to encrypt non-random plaintexts of
variable length and to be secure against active attackers who observe the receiver’s
responses to forged ciphertexts. The literature contains several different ways to
convert the McEliece encryption scheme into this more useful type of encryption
scheme, with considerable attention paid to

• the ciphertext overhead (ciphertext length minus plaintext length) and

• the set of attacks that are proven to be as difficult as the t-error decoding
problem (e.g., generic-hash IND-CCA2 attacks in [KI01]).

However, much less attention has been paid to

• the cost in encryption time,

• the cost in decryption time, and

• security against timing attacks.

The work described in previous sections of this chapter, speeding up t-error decoding
and protecting it against timing attacks, can easily be ruined by a conversion that is
slow or that adds its own timing leaks. We point out, for example, that straightforward
implementations of any of the decryption procedures presented in [KI01] would abort
if the “DMcEliece” step fails; the resulting timing leak allows all of the devastating
attacks that [KI01] claims to eliminate.

This section specifies a fast code-based public-key encryption scheme that provides
high security, including security against timing attacks. This section also compares
the scheme to various alternatives.

34 CHAPTER 4. MCBITS

4.5.1 Parameters
The system parameters are positive integers m, q, n, t, k such that n ≤ q = 2m, k =
n −mt, and t ≥ 2. For example, one can take m = 12, n = q = 4096, t = 41, and
k = 3604.

4.5.2 Key generation
The receiver’s secret key has two parts: first, a sequence (α1, α2, . . . , αn) of dis-
tinct elements of Fq; second, a squarefree degree-t polynomial g ∈ Fq[x] such that
g(α1)g(α2) · · · g(αn) 6= 0. These can of course be generated dynamically from a much
smaller secret.

The receiver computes the t× n matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−11 /g(α1) αt−12 /g(α2) · · · αt−1n /g(αn)

over Fq. The receiver then replaces each entry in this matrix by a column of m bits
in a standard basis of Fq over F2, obtaining an mt× n matrix H over F2. The kernel
of H, i.e., the set of c ∈ Fn2 such that Hc = 0, is a vector space of dimension at least
n−mt = k, namely the Goppa code Γ = Γ2(α1, . . . , αn, g).

At this point one can compute the receiver’s public key K by applying Gaussian
elimination (with partial pivoting) to H. Specifically, K is the result of applying a
sequence of elementary row operations to H (adding one row to another row), and
is the unique result in systematic form, i.e., the unique result whose left tm × tm
submatrix is the identity matrix. One can trivially compress K to (n − mt)mt =
k(n−k) bits by not transmitting the identity matrix; this compression was introduced
by Niederreiter in [Nie86], along with the idea of using a systematic parity-check
matrix for Γ instead of a random parity-check matrix for Γ. If Gaussian elimination
fails (i.e., if the left tm× tm submatrix of H is not invertible) then the receiver starts
over, generating a new secret key; approximately 3 tries are required on average.

The standard approach to Gaussian elimination is to search for a 1 in the first
column (aborting if there is no 1), then swap that row with the first row, then subtract
that row from all other rows having a 1 in the first column, then continue similarly
through the other columns. This approach has several timing leaks in the success
cases. (It also takes variable time in the failure cases, but those cases are independent
of the final secret.) We eliminate the timing leaks in the success cases as follows, with
only a small constant-factor overhead. We add 1− b times the second row to the first
row, where b is the first entry in the first row; and then similarly (with updated b)
for the third row etc. We then add b times the first row to the second row, where b
is the first entry in the second row; and then similarly for the third row etc. We then
continue similarly through the other columns.

An alternate strategy is to first apply a reasonably long sequence of elementary
row operations to H, using a public sequence of rows but secret random multiples.
Here “reasonably long” is chosen so that the output is negligibly different from a

4.5. A COMPLETE CODE-BASED CRYPTOSYSTEM 35

uniform random parity-check matrix for the same code. That parity-check matrix
can safely be made public, so one can feed it to any Gaussian-elimination routine to
obtain K, even if the Gaussian-elimination routine leaks information about its input
through timing.

One can argue that key generation provides the attacker only a single timing
trace (for the secret key that ends up actually being used), and that this single trace
is not enough information to pinpoint the secret key. However, this argument relies
implicitly on a detailed analysis of how much information the attacker actually obtains
through timing. By systematically eliminating all timing leaks we eliminate the need
for such arguments and analyses.

4.5.3 Encryption

To encrypt a variable-length message we generate a random 256-bit key for a stream
cipher and then use the cipher to encrypt the message. AES-CTR has fast constant-
time implementations for some platforms but not for others, so we instead choose
Salsa20 [Ber08b] as the stream cipher. To eliminate malleability we also generate a
random 256-bit key for the Poly1305 MAC [Ber05], which takes time dependent only
on the message length, and use this MAC to authenticate the ciphertext.

To generate these two secret keys we generate a random weight-t vector e ∈ Fn2
and then hash the vector to 512 bits. For the moment we use SHA-512 as the hash
function. An alternative is to use SHA3-512 [BDP+13].

To transmit the vector e to the receiver we compute and send w = Ke ∈ Ftm2 .
The ciphertext overhead is tm bits for w, plus 128 bits for the authenticator.

Note that we are following Shoup’s “KEM/DEM” approach (see [Sho01]) rather
than the classic “hybrid” approach. The hybrid approach (see, e.g., [OS09, Section
5.1]) is to first generate random secret keys, then encode those secret keys (with
appropriate padding) as a weight-t vector e. The KEM/DEM approach is to first
generate a weight-t vector e and then hash that vector to obtain random secret keys.
The main advantage of the KEM/DEM approach is that there is no need for the
sender to encode strings injectively as weight-t vectors, or for the receiver to decode
weight-t vectors into strings. The sender does have to generate a random weight-t
vector, but this is relatively easy since there is no requirement of injectivity.

A security proof for Niederreiter KEM/DEM appeared in Persichetti’s thesis
[Per12]. The proof assumes that the t-error decoding problem is hard; it also as-
sumes that a decoding failure for w is indistinguishable from a subsequent MAC
failure. This requires care in the decryption procedure; see below.

4.5.4 Decryption

A ciphertext has the form (a,w, c) where a ∈ F128
2 , w ∈ Ftm2 , and c ∈ F∗2. The receiver

decodes w (as discussed below) to obtain a weight-t vector e ∈ Fn2 such that w = Ke,
hashes e to obtain a Salsa20 key and a Poly1305 key, verifies that a is the Poly1305
authenticator of c, and finally uses Salsa20 to decrypt c into the original plaintext.

Our decoding procedure is a constant-time sequence of bit operations and always
outputs a vector e, even if w does not actually have the form Ke. With a small extra

36 CHAPTER 4. MCBITS

cost we also compute, in constant time, an extra bit indicating whether decoding
succeeded. We continue through the hashing and authenticator verification in all
cases, mask the authenticator-valid bit with the decoding-succeeded bit, and finally
return failure if the result is 0. This procedure rejects all forgeries with the same
sequence of bit operations; there is no visible distinction between decoding failures
and authenticator failures.

Finding a weight-t vector e given w = Ke is the problem of syndrome decoding for
K. We follow one of the standard approaches to syndrome decoding: first compute
some vector v ∈ Fn2 such that w = Kv, and then find a codeword at distance t from
v; this codeword must be v − e, revealing e. We use a particularly simple choice of
v, taking advantage of K having systematic form: namely, v is w followed by n−mt
zeros. (This choice was recommended to us by Nicolas Sendrier; we do not know where
it was first used in code-based cryptography.) This choice means that the receiver
does not need to store K. We also point out that some of the conditional swaps in
Section 4.4 are guaranteed to take 0, 0 as input and can therefore be skipped.

There are two standard methods to find a codeword at distance t from v: Ber-
lekamp’s method [Ber68] and Patterson’s method [Pat75]. To apply Berlekamp’s
method one first observes that Γ = Γ2(α1, . . . , αn, g

2), and then that Γ is the F2-
subfield subcode of the generalized Reed–Solomon code Γq(α1, . . . , αn, g

2). Berle-
kamp’s method decodes generalized Reed–Solomon codes by computing a syndrome
(Section 4.3), then using the Berlekamp–Massey algorithm to compute an error-
locator polynomial, then computing the roots of the error-locator polynomial (Sec-
tion 4.2).

Many authors have stated that Patterson’s method is somewhat faster than Berle-
kamp’s method. Patterson’s method has some extra steps, such as computing a square
root modulo g, but has the advantage of using g instead of g2, reducing some compu-
tations to half size. On the other hand, Berlekamp’s method has several advantages.
First, as mentioned at the beginning of this Chapter, combinatorial list-decoding al-
gorithms decode more errors, adding security for the same key size, by guessing a
few error positions; in this case most decoding attempts fail (as in Section 4.6), and
the analysis in [LS12b] suggests that this makes Berlekamp’s method faster than Pat-
terson’s method. Second, Berlekamp’s method generalizes to algebraic list-decoding
algorithms more easily than Patterson’s method; see, e.g., [Ber11]. Third, Berle-
kamp’s method is of interest in a wider range of applications. Fourth, Berlekamp’s
method saves code size. Finally, Berlekamp’s method is easier to protect against
timing attacks.

4.6 New speed records for CFS signatures

CFS is a code-based public-key signature system proposed by Courtois, Finiasz, and
Sendrier in [CFS01]. The main drawbacks of CFS signatures are large public-key sizes
and inefficient signing; the main advantages are short signatures, fast verification,
and post-quantum security. This section summarizes the CFS signature system and
reports our CFS speeds.

4.6. NEW SPEED RECORDS FOR CFS SIGNATURES 37

4.6.1 Review of CFS
System parameters are m, q, n, t, k as in Section 4.5, with two extra requirements:
n = q, and g is irreducible. Key generation works as in the encryption scheme
described in Section 4.5.

The basic idea of signing is simple. To sign a messageM , first hash this message to
a syndrome. If this syndrome belongs to a word at distance ≤ t from a codeword, use
the secret decoding algorithm to obtain the error positions and send those positions as
the signature. The verifier simply adds the columns of the public-key matrix indexed
by these positions and checks whether the result is equal to the hash of M .

Unfortunately, a random syndrome has very low chance of being the syndrome
of a word at distance ≤ t from a codeword. CFS addresses this problem using com-
binatorial list decoding: guess δ error positions and then proceed with decoding. If
decoding fails, guess a different set of δ error positions. Finding a decodable syndrome
requires many guesses; as shown in [CFS01] the average number of decoding attempts
is very close to t!. The decoding attempts for different guesses are independent; we
can thus make efficient use of bitslicing in a single signature computation.

We actually use parallel CFS, a modification of CFS proposed by Finiasz in [Fin11].
The idea is to compute λ different hashes of the message M and compute a CFS
signature for each of these hashes. This increases the security level of CFS against a
2004 Bleichenbacher attack; see generally [OS09] and [Fin11].

4.6.2 Previous CFS speeds
Landais and Sendrier in [LS12b] describe a software implementation of parallel CFS
with various parameters that target the 80-bit security level. Their best performance
is for parameters m = 20, t = 8, δ = 2 and λ = 3. With these parameters they
compute a signature in 1.32 seconds on average on an Intel Xeon W3670 (Westmere
microarchitecture) running at 3.2GHz, i.e., 4.2 · 109 cycles per signature on average.

4.6.3 New CFS software
Our CFS software uses the same set of parameters. For most of the computation
we also use the same high-level algorithms as the software described in [LS12b]: in
particular, we use the Berlekamp–Massey algorithm to compute the error-locator poly-
nomial f , and we test whether this polynomial splits into linear factors by checking
whether x2

m ≡ x (mod f).
The most important difference in our implementation is the bitsliced field arith-

metic. This has two advantages: it is faster and it does not leak timing information.
Some parts of the computation are performed on only one stream of data (since we
sign one message at a time), but even in those parts we continue using constant-time
field arithmetic rather than the lookup-table-based arithmetic used in [LS12b].

We do not insist on the entire signing procedure taking constant time, but we do
guarantee that the signing time (and all lower-level timing information) is independent
of all secret data. Specifically, to guarantee that an attacker has no information about
the guessed error positions that did not allow successful decoding, we choose δ = 2
random elements of F2m and compute the corresponding public-key columns, rather

38 CHAPTER 4. MCBITS

than running through guesses in a predictable order. These columns are at some
positions in the public key; we compute these positions (in constant time) if decoding
is successful.

There are three main bottlenecks in generating a signature:

• pick e1, e2 ∈ F2m at random and compute the corresponding public-key columns;

• use Berlekamp–Massey to obtain an error-locator polynomial f ;

• test whether x2
m ≡ x (mod f).

Once such a polynomial f has been found, we multiply it by (x − e1)(x − e2) to
obtain a degree-10 error-locator polynomial. We then find all roots of this polynomial
and output the set of corresponding support positions as the signature. We split the
root-finding problem into 256 separate 212-point evaluation problems, again allowing
fast constant-time bitsliced arithmetic for a single signature.

4.6.4 New CFS speeds
Our software signs in than 0.425 · 109 Ivy Bridge cycles on average; the median is
0.391 · 109 Ivy Bridge cycles. This cycle count is an order of magnitude smaller than
the cycle count in [LS12b]. We measured this performance across 100000 signature
computations on random 59-byte messages on one core of an otherwise idle Intel Core
i5-3210M with Turbo Boost and hyperthreading disabled.

It is common to filter out variations in cycle counts by reporting the median cycle
count for many computations. Note, however, that the average is noticeably higher
than the median for this type of random process. Similar comments apply to, e.g.,
RSA key generation.

Most of the 0.425 · 109 cycles are used by the three steps described above:

• picking e1 and e2 and computing the corresponding columns takes 52792 cycles
for a batch of 256 iterations;

• the Berlekamp–Massey step takes 189900 cycles for a batch of 256 iterations;

• testing whether x2
m ≡ x (mod f) takes 436008 cycles for a batch of 256 itera-

tions.

These computations account for (52792+189900+436008)(t!λ+128)/256 ≈ 0.32 ·109

cycles on average. Root-finding, repeated λ times, accounts for another 0.05 · 109

cycles. A small number of additional cycles are consumed by hashing, converting to
bitsliced form, multiplying the degree-8 error-locator polynomial f by (x−e1)(x−e2),
et al.

We also have extremely fast software for signature verification, taking only 2176
cycles. This count is obtained as the median of 1000 signature verifications for 59-
byte messages. Furthermore we have software for Intel and AMD processors that do
not feature the AVX instruction set and that instead uses SSE instructions on 128-
bit vectors. This software generates a signature in 0.658 · 109 cycles on average and
verifies a signature in only 2790 cycles on one core of an Intel Core 2 Quad Q6600
CPU.

5
QcBits: constant-time small-key

code-based cryptography

In 2012, Misoczki, Tillich, Sendrier, and Barreto proposed to use QC-MDPC codes for
code-based cryptography [MTS+13]. The main benefit of using QC-MDPC codes is
that they allow small key sizes, as opposed to using binary Goppa codes as proposed in
the original McEliece paper [McE78]. Since then, implementation papers for various
platforms have been published; see [HMG13; MG14a] (for FPGA and AVR), [MG14b;
MHG16] (for Cortex-M4), and [MOG15] (for Haswell, includes results from [HMG13;
MG14a; MG14b]).

One problem of QC-MDPC codes is that the most widely used decoding algorithm,
when implemented naively, leaks information about secrets through timing. Even
though decoding is only used for decryption, the same problem can also arise if the key-
generation and encryption are not constant-time. Unfortunately, the only software
implementation paper that addresses the timing-attack issue is [MG14b]. [MG14b]
offers constant-time encryption and decryption on a platform without caches (for
writable-memory).

This chapter presents QcBits (pronounced “quick-bits”), a fully constant-time
implementation of a QC-MDPC-code-based encryption scheme. QcBits provides
constant-time key-pair generation, encryption, and decryption for a wide variety of
platforms, including platforms with caches. QcBits follows the McBits paper [BCS13]
to use a variant of the Niederreiter KEM/DEM encryption scheme proposed in [Per12;
Per13]. As a property of the KEM/DEM encryption scheme, the software is pro-
tected against adaptive chosen ciphertext attacks, as opposed to the plain McEliece
or Niederreiter [Nie86] encryption scheme. The code is written in C, which makes
it easy to understand and verify. Moreover, QcBits outperforms the performance
results achieved by all previous implementation papers; see below.

39

40 CHAPTER 5. QCBITS

platform key-pair encrypt decrypt reference implementation scheme
Haswell 784 192 82 732 1 560 072 (new) QcBits clmul KEM/DEM

20 339 160 225 948 2 425 516 (new) QcBits ref KEM/DEM
*14 234 347 *34 123 *3 104 624 [MOG15] McEliece

Sandy Bridge 2 497 276 151 204 2 479 616 (new) QcBits clmul KEM/DEM
44 180 028 307 064 3 137 088 (new) QcBits ref KEM/DEM

Cortex-A8 61 544 763 1 696 011 16 169 673 (new) QcBits ref KEM/DEM
Cortex-M4 140 372 822 2 244 489 14 679 937 (new) QcBits no-cache KEM/DEM

*63 185 108 *2 623 432 *18 416 012 [MHG16] KEM/DEM
*148 576 008 7 018 493 42 129 589 [MG14b] McEliece

Table 5.1: Performance results for QcBits, [MHG16], [MG14b], and the vec-
torized implementation in [MOG15]. The “key-pair” column shows cycle counts
for generating a key pair. The “encrypt” column shows cycle counts for encryp-
tion. The “decrypt” column shows cycle counts for decryption. For performance
numbers of Qcbits, 59-byte plaintexts are used to follow the eBACS [BL] conven-
tion. For [MHG16] 32-byte plaintexts are used. Cycle counts labeled with * mean
that the implementation for the operation is not constant-time on the platform,
which means that the worst-case performance can be much worse (especially for
decryption). Note that all the results are for 280 security.

The reader should be aware that QcBits, in the current version, uses a 280-security
parameter set from [MTS+13]. Note that with some small modifications QcBits can
be used for a 2128 security parameter. However, I have not found good “thresholds”
for the decoder for 2128 security that achieves a low failure rate, and therefore I decide
not to include the code for 2128 security in the current version. Also, the key space
used is smaller than the one described in [MTS+13]. However, this is also true for all
previous implementation papers [HMG13; MG14a; MG14b; MHG16; MOG15]. These
design choices are made to reach a low decoding failure rate; see Section 5.1.1 and 5.6
for more discussions.

Performance results. The performance results of QcBits are summarized in Ta-
ble 5.1, along with the results for [MHG16], [MG14b], and the vectorized implemen-
tation in [MOG15]. In particular, the table shows performance results of the im-
plementations contained in Qcbits for different settings. The implementation “ref”
serves as the reference implementation, which can be run on all reasonable 64/32-bit
platforms. The implementation “clmul” is a specialized implementation that relies
on the PCLMULQDQ instruction, i.e., the 64 × 64 → 128-bit carry-less multiplication
instruction. The implementation “no-cache” is similar to ref except that it does
not provide full protection against cache-timing attacks. Both “ref” and ”clmul” are
constant-time, even on platforms with caches. “no-cache” is constant-time only on
platforms that do not have cache for writable memory.

Regarding previous works, both the implementations in [MOG15] for Haswell
and [MHG16] for Cortex-M4 are not constant-time. [MG14b] seems to provide cons-
tant-time encryption and decryption, even though the paper argues about resistance
against simple-power analysis instead of being constant-time.

On the Haswell microarchitecture, QcBits is about twice as fast as [MOG15] for

41

platform key-pair encrypt decrypt reference implementation scheme
Haswell 5 824 028 196 836 1 363 948 (new) QcBits clmul KEM/DEM

*54 379 733 *106 871 *18 825 103 [MOG15] McEliece
Cortex-M4 750 584 383 6 353 732 7 436 655 (new) QcBits no-cache KEM/DEM

*251 288 544 *13 725 688 *80 260 696 [MHG16] KEM/DEM

Table 5.2: Performance results for QcBits, [MHG16], and the vectorized imple-
mentation in [MOG15] for 128-bit security. The cycle counts for QcBits decryption
are underlined to indicate that these are cycle counts for one decoding iteration.

decryption and an order of magnitude faster for key-pair generation, even though the
implementation of [MOG15] is not constant-time. QcBits takes much more cycles
on encryption. This is mainly because QcBits uses a slow source of randomness; see
Section 5.2.1 for more discussions. A minor reason is that KEM/DEM encryption
requires intrinsically some more operations than McEliece encryption, e.g., hashing.

For tests on Cortex-M4, STM32F407 is used for QcBits and [MG14b], while
STM32F417 is used for [MHG16]. Note that there is no cache for writable memory
(SRAM) on these devices. QcBits is faster than [MHG16] for encryption and decryp-
tion. The difference is even bigger when compared to [MG14b]. The STM32F407/417
product lines provide from 512 kilobytes to 1 megabyte of flash. [MHG16] reports
a flash usage of 16 124 bytes, while the implementation no-cache uses 62 kilobytes
of flash. Note that [MHG16] uses an AES crypto co-processor on STM32F417 to
facilitate symmetric encryption and authentication, which presumably results in less
flash memory consumption than using a self-implemented AES. In contrast, QcBits
does not use AES for symmetric operations so it cannot save flash memory in the
same way. However, this also means QcBits is more portable than the implementa-
tion in [MHG16]. Regarding SRAM usage, the numbers reported in [MHG16] do not
seem to include run-time stack-memory usage, and I am not aware of a good way to
measure it.

It is important to note that, since the decoding algorithm is probabilistic, each
implementation of decryption comes with a failure rate. For QcBits no decryption
failure occurred in 108 trials. I have not found parameters for the decoding algortihm
that achieves the same level of failure rate at a 2128 security level, which is why QcBits
uses a 280-security parameter set. For [MOG15], no decryption failure occurred in
107 trials. For [MHG16] the failure rate is not indicated, but the decoder seems to be
the same as [MOG15]. It is unclear what level of failure rate [MG14b] achieves. See
Section 5.6 for more discussions about failure rates.

Table 5.2 shows performance results for 128-bit security. Note that [MOG15]
and [MHG16] did not specify the failure rates they achieved for 128-bit security.
Using paramters derived from the formulas in [MTS+13, Appendix A] leads to a
failure rate of 0.0069 using 12 decoding iterations (see Section 5.5). I found some sets
of parameters that achive a failure rate around 10−5 using 20 decoding iterations, but
this is still far from 10−8.

QcBits versus McBits. In 2013, In 2013, together with Bernstein and Schwabe, I
introduced McBits (cf. [BCS13]), a constant-time implementation for the KEM/DEM

42 CHAPTER 5. QCBITS

encryption scheme using binary Goppa code. At a 2128 security level, the software
takes only 60493 Ivy Bridge cycles to decrypt. It might seem that QcBits is far slower
than McBits. However, the reader should keep in mind that McBits relies on external
parallelism to achieve such speed: the cycle count is the result of dividing the time for
running 256 decryption instances in parallel by 256. The speed of QcBits relies only
on internal parallelism: the timings presented in Table 5.1 are all results of running
only one instance. See Section 5.4.3 for more details on how QcBits makes use of
bitslicing.

It is also worth noticing that using QC-MDPC code allows much smaller key sizes.
[MTS+13] reports a public-key size of 601 bytes for a 80-bit security parameter set
and 1233 bytes for 128-bit security parameter set, while [BCS13] reports 74624 bytes
for a 80-bit security parameter set and 221646 bytes for a 128-bit security parameter
set.

Binary Goppa code and QC-MDPC code are also quite different in their history in
cryptography. The usage of binary Goppa code was proposed by McEliece in [McE78]
in 1978, along with the McEliece cryptosystem. After almost 40 years, nothing has
really changed the practical security of the system. QC-MPDC-code-based cryptosys-
tems, however, are still quite young and thus require some time to gain confidence
from the public.

5.1 Preliminaries

This section presents preliminaries for the following sections. Section 5.1.1 gives a
brief review on the definition of QC-MDPC codes. Section 5.1.2 describes the “bit-
flipping” algorithm for decoding QC-MDPC codes. Section 5.1.3 gives a specification
of the KEM/DEM encryption scheme implemented by QcBits.

5.1.1 QC-MDPC codes

“MDPC” stands for “moderate-density-parity-check”. As the name implies, an MDPC
code is a linear code with a “moderate” number of non-zero entries in a parity-check
matrix H. For ease of discussion, in this chapter it is assumed H ∈ Fn×N2 where
N = 2n, even though some parameter sets in [MTS+13] use N = 3n or N = 4n. H
is viewed as the concatenation of two square matrices, i.e., H = H(0)|H(1), where
H(i) ∈ Fn×n2 .

“QC” stands for “quasi-cyclic”. Being quasi-cyclic means that each H(i) is “cyclic”.
For ease of discussion, one can think this means

H
(k)
(i+1) mod n,(j+1) mod n = H

(k)
i,j ,

even though the original paper allows a row permutation onH. Note that being quasi-
cyclic implies that H has a fixed row weight w. The following is a small parity-check

5.1. PRELIMINARIES 43

matrix with n = 5, w = 4:
1 0 1 0 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 0

 .

The number of errors a code is able to correct is often specified as t. Since there
is no good way to figure out the minimum distance for a given QC-MDPC code, t is
usually merely an estimated value.

Qcbits uses n = 4801, w = 90, and t = 84 matching a 280-security parameter set
proposed in [MTS+13]. However, Qcbits further requires that H(0) and H(1) have
the same row weight, namely w/2. This is not new, however, as all the previous
implementation papers [HMG13; MG14a; MG14b; MHG16; MOG15] also restrict H
in this way. For QcBits this is a decision for achieving low failure rate; see Section 5.6
for more discussions on this issue. Previous implementation papers did not explain
why they restrict H in this way.

5.1.2 Decoding (QC-)MDPC codes
As opposed to many other linear codes that allow efficient deterministic decoding,
the most popular decoder for (QC-)MDPC code, the “bit-flipping” algorithm, is a
probabilistic one. The bit-flipping algorithm shares the same idea with so-called
“statistical decoding” [Ove06; Jab01]. (The term “statistical decoding” historically
come later than “bit-flipping”, but “statistical decoding” captures way better the idea
behind the algorithm.)

Given a vector that is at most t errors away from a codeword, the algorithm aims
to output the codeword (or equivalently, the error vector) in a sequence of iterations.
Each iteration decides statistically which of the N positions of the input vector v
might have a higher chance to be in error and flips the bits at those positions. The
flipped vector then becomes the input to the next iteration. In the simplest form of
the algorithm, the algorithm terminates when Hv becomes zero.

The presumed chance of each position being in error is indicated by the count of
unsatisfied parity checks. The higher the count is, the higher the presumed chance a
position is in error. In other words, the chance of position i being in error is indicated
by

ui = |{i | Hi,j = (Hv)i = 1}|.

In this chapter the syndrome Hv will be called the private syndrome.
Now the remaining problem is, which bits should be flipped given the vector u?

In [MTS+13] two possibilities are given:

• Flip all positions that violate at least max({ui})− δ parity checks, where δ is a
small integer, say 5.

• Flip all positions that violate at least Ti parity checks, where Ti is a precomputed
threshold for iteration i.

44 CHAPTER 5. QCBITS

In previous works several variants have been invented. For example, one variant based
on the first approach simply restarts decoding with a new δ if decoding fails in 10
iterations.

QcBits uses precomputed thresholds. The number of decoding iterations is set to
be 6, and the thresholds are

29, 27, 25, 24, 23, 23.

These thresholds are obtained by interactive experiments. I do not claim that these
are the best thresholds. With this list of thresholds, no iteration failure occurs in 108

decoding trials. See Section 5.5 for more details about the trials.
The best results in previous implementation papers [HMG13; MG14a; MG14b;

MHG16; MOG15] are achieved by a variant of the precomputed-threshold approach.
In each iteration of the variant, the ui’s are computed in order. If the current ui is
greater than or equal to the precomputed threshold, vi is flipped and the syndrome is
directly updated by adding the i-th column of H to the syndrome. With this variant,
[MOG15] reports that the average number of iterations is only 2.4.

QcBits always takes 6 decoding iterations, which is much more than 2.4. However,
the algorithms presented in the following sections allow QcBits to run each iteration
very quickly, albeit being constant-time. As the result, Qubits still achieves much
better performance results in decryption.

5.1.3 The Niederreiter KEM/DEM encryption system for QC-
MDPC codes

The KEM/DEM encryption uses the Niederreiter encryption scheme for KEM. Nieder-
reiter encryption is used to encrypt a random vector e of weight t, which is then fed
into a key-derivation function to obtain the symmetric encryption and authentica-
tion key. The ciphertext is then the concatenation of the Niederreiter ciphertext, the
symmetric ciphertext, and the authentication tag for the symmetric ciphertext. The
decryption works in a similar way as encryption; see for example [BCS13] for a more
detailed description. QcBits uses Keccak [BDP+13] with 512-bit outputs to hash e,
and the symmetric encryption and authentication key are defined to be the first and
second half of the hash value. For symmetric encryption and authentication, QcBits
uses Salsa20 [Ber08b] with nonce 0 and Poly1305 [Ber05]. Note that QcBits does
not include code for Keccak, Salsa20, and Poly1305. The user can choose their own
implementations for the schemes.

The secret key is a representation of a random parity-check matrix H. Since the
first row H gives enough information to form the whole matrix, it suffices to represent
H using an array of indices in {j | H(0)

0,j = 1} and an array of indices in {j | H(1)
0,j = 1}.

In each array the indices should not repeat, but they are not required to be sorted.
QcBits represents each array as a byte stream of length w, where the i-th double
byte is the little-endian representation of the i-th index in the array. The secret key
is then defined as the concatenation of the two byte streams.

The public key is a representation of the row reduced echelon form of H. The row
reduced matrix is denoted as P . Niederreiter requires P (0) to be the identity matrix

5.2. KEY-PAIR GENERATION 45

In, or the key pair must be rejected. (Previous papers such as [MG14b] use P (1) = In
instead of P (0) = In, but it does not matter which one is used.) In other words, P (1)

contains all information of P (if P is valid). Note that P is also quasi-cyclic; QcBits
thus defines the public key as a byte stream of length b(n + 7)/8c, where the byte
values are

(P
(1)
7,0P

(1)
6,0 . . . P

(1)
0,0)2, (P

(1)
15,0P

(1)
14,0 . . . P

(1)
8,0)2, . . .

The encryption process begins with generating a random vector e of weight t. The
ciphertext for e is then the public syndrome s = Pe, which is represented as a byte
stream of length b(n+ 7)/8c, where the byte values are

(s7s6 . . . s0)2, (s15s14 . . . s8)2,

For hashing, e is represented as a byte stream of length b(N + 7)/8c in a similar
way as the public syndrome. The 32-byte symmetric encryption key and the 32-byte
authentication key are then generated as the first and second half of the 64-byte
hash value of the byte stream. The plaintext m is encrypted and authenticated using
the symmetric keys. The ciphertext for the whole KEM/DEM scheme is then the
concatenation of the public syndrome, the ciphertext under symmetric encryption,
and the tag. In total the ciphertext takes b(n+ 7)/8c+ |m|+ 16 bytes.

When receiving an input stream, the decryption process parses it as the concate-
nation of a public syndrome, a ciphertext under symmetric encryption, and a tag.
Then an error vector e′ is computed by feeding the public syndrome into the de-
coding algorithm. If Pe′ = s, decoding is successful. Otherwise, a decoding failure
occurs. The symmetric keys are then generated by hashing e′ to perform symmetric
decryption and verification. QcBits reports a decryption failure if and only if the
verification fails or the decoding fails.

5.2 Key-pair generation
This section shows how QcBits performs key-pair generation using multiplications in
F2[x]/(xn − 1). Section 5.2.1 shows how the private key is generated. Section 5.2.2
shows how key-pair generation is viewed as multiplications in F2[x]/(xn − 1). Sec-
tion 5.2.3 shows how multiplications in F2[x]/(xn−1) are implemented. Section 5.2.4
shows how squarings in F2[x]/(xn − 1) are implemented.

5.2.1 Private-key generation
The private-key is defined to be an array of w random 16-bit indices. QcBits ob-
tains random bytes by first reading 32 bytes from a source of randomness and then
expands the 32 bytes into the required length using salsa20. QcBits allows the
user to choose any source of randomness. To generate the performance numbers on
Ivy Bridge, Sandy Bridge, and Cortex-A8 in Table 5.1, /dev/urandom is used as the
source of randomness. To generate the performance numbers on Cortex-M4 in Ta-
ble 5.1, the TRNG on the board is used as in [MHG16]. The RDRAND instruction used
by [MOG15] is not considered for there are security concerns about the instruction;
see the Wikipedia page of RDRAND [Wik16b]. One can argure that there is no evidence
of a backdoor in RDRAND, but I decide not to take the risk.

46 CHAPTER 5. QCBITS

5.2.2 Polynomial view: public-key generation
For any matrix M , let Mi,: denote the vector (Mi,0,Mi,1, . . .) and similarly for M:,i.
In Section 5.1, the public key is defined as a sequence of bytes representing P

(1)
:,0 ,

where P is the row reduced echelon form of the parity-check matrix H. A simple
way to implement constant-time public-key generation is thus to generate H from
the private key and then perform a Gaussian elimination. It is not hard to make
Gausssian elimination constant-time; see for example, [BCS13]. However, public-key
generation can be made much more time- and memory-efficient when considering it
as polynomial operations, making use of the quasi-cyclic structure.

For any vector v of length n, let v(x) = v0 + v1x+ · · ·+ vn−1x
n−1. As a result of

H(0) being cyclic, we have

H
(i)
j,: (x) = xjH

(i)
0,: (x) ∈ F2[x]/(xn − 1).

The Gaussian elimination induces a linear combination of the rows ofH(0) that results
in P (0)

0,: . In other words, there exists a set I of indices such that

1 =
∑
i∈I

xiH
(0)
0,: (x) = (

∑
i∈I

xi)H
(0)
0,: (x),

P
(1)
0,: (x) =

∑
i∈I

xiH
(1)
0,: (x) = (

∑
i∈I

xi)H
(1)
0,: (x).

In other words, the public key can be generated by finding the inverse of H(0)
0,: (x)

in F2[x]/(xn − 1) and then multiplying the inverse by H(1)
0,: (x). The previous imple-

mentation papers [HMG13; MG14a; MG14b; MHG16; MOG15] compute the inverse
using the extended Euclidean algorithm. Unfortunately, the algorithm in its original
form is highly non-constant-time, and it is unclear how to make it both constant-time
and efficient.

In order to be constant-time, QcBits computes the inverse by carrying out a fixed
sequence of polynomial multiplications. To see this, first consider the factorization of
xn− 1 ∈ F2[x] as

∏
i

(
f (i)(x)

)pi , where each f (i) is irreducible. F2[x]/(xn− 1) is then
equivalent to ∏

i

F2[x]
/(

f (i)(x)
)pi

Since ∣∣∣∣(F2[x]/
(
f (i)(x)

)pi)∗∣∣∣∣ = 2deg(f(i))·pi · (2deg(f(i)) − 1)/2deg(f(i))

= 2deg(f(i))·pi − 2deg(f(i))·(pi−1),

one may compute the inverse of an element in F2[x]/(xn − 1) by raising it to power

lcm
(

2deg(f(1))·p1 − 2deg(f(1))·(p1−1), 2deg(f(2))·(p2−1) − 2deg(f(2))·(p2−1), . . .
)
− 1.

QcBits uses n = 4801. The polynomial x4801 − 1 can be factored into

(x+ 1)f (1)f (2)f (3)f (4) ∈ F2[x],

5.2. KEY-PAIR GENERATION 47

where each f (i) is an irreducible polynomial of degree 1200. Therefore, QcBits
computes the inverse of a polynomial modulo x4801 − 1 by raising it to the power
lcm(2− 1, 21200 − 1)− 1 = 21200 − 2.

Raising an element in F2[x]/(x4801 − 1) to the power 21200 − 2 can be carried out
by a sequence of squarings and multiplications. The most naive way is to use the
square-and-multiply algorithm, which leads to 1199 squarings and 1198 multiplica-
tions. QcBits does better by finding a good addition chain for 21200 − 2. First note
that there is a systematic way to find a good addition chain for integers of the form
2k − 1. Take 211 − 1 for example, the chain would be

1→ 102 → 112 → 11002 → 11112 → 111100002 → 111111112 → 11111111002

→ 11111111112 → 111111111102 → 111111111112.

This takes 10 doublings and 5 additions. Using the same approach, it is easy to find
an addition chain for 2109−1 that takes 108 doublings and 10 additions. QcBits then
combines the addition chains for 211 − 1 and 2109 − 1 to form an addition chain for
211·109 − 1 = 21199 − 1, which takes 10 · 109 + 108 = 1198 doubling and 5 + 10 = 15
additions. Once the (21199 − 1)-th power is computed, the (21200 − 2)-th power can
be computed using one squaring. In total, computation of the (21200 − 2)-th power
takes 1199 squarings and 15 multiplications in F2[x]/(x4801 − 1).

Finally, with the inverse, P (1)
0,: (x) can be computed using one multiplication. The

public key is defined to be a representation of P (1)
:,0 instead of P (1)

0,: . Qcbits thus
derives P (1)

0,: from P
(1)
:,0 by noticing

P
(1)
0,j =

{
P

(1)
0,n−j if j > 0

P
(1)
0,0 if j = 0.

Note that the conversion from P
(1)
:,0 to P (1)

0,: does not need to be constant-time because
it can be easily reversed from public data.

5.2.3 Generic multiplication in F2[x]/(x
n − 1)

The task here is to compute h = fg, where f, g ∈ F2[x]/(xn − 1). In QcBits, the
polynomials are represented using an array of dn/be b-bit words in the natural way.
Take f for example (the same applies to g and h), the b-bit values are:

(fb−1fb−2 . . . f0)2, (f2b−1f2b−2 . . . fb)2,

The user can choose b to be 32 or 64, but for the best performance b should be chosen
according to the machine architecture. Let y = xb. One can view this representation
as storing each coefficient of the radix-y representation of f using one b-bit integer.
In this chapter this representation is called the “dense representation”.

Using the representation, we can compute the coefficients (each being a 2b-bit
value) of the radix-y representation of h, using carry-less multiplications on the b-bit
words of f and g. Once the 2b-bit values are obtained, the dense representation of h
can be computed with a bit of post-processing. To be precise, given two b-bit numbers

48 CHAPTER 5. QCBITS

(αb−1αb−2 · · ·α0)2 and (βb−1βb−2 · · ·β0)2, a carry-less multiplication computes the 2b-
bit value (having actually only 2b− 1 bits) ⊕

i+j=2b−2

αiβj
⊕

i+j=2b−3

αiβj · · ·
⊕
i+j=0

αiβj

2

.

In other words, the input values are considered as elements in F2[x], and the output
is the product in F2[x].

The implementations clmul uses the PCLMULQDQ instruction to perform carry-less
multiplications between two 64-bit values. For the implementation ref and no-cache,
the following C code is used to compute the higher and lower b bits of the 2b-bit value:

low = x * ((y >> 0) & 1);
v1 = x * ((y >> 1) & 1);
low ^= v1 << 1;
high = v1 >> (b-1);
for (i = 2; i < b; i+=2)
{

v0 = x * ((y >> i) & 1);
v1 = x * ((y >> (i+1)) & 1);
low ^= v0 << i;
low ^= v1 << (i+1);
high ^= v0 >> (b-i);
high ^= v1 >> (b-(i+1));

}

5.2.4 Generic squaring in F2[x]/(x
n − 1)

Squarings in F2[x]/(xn−1) can be carried out as multiplications. However, obviously
squaring is a much cheaper operation as only dn/be carry-less multiplications (actually
squarings) are required.

The implementation clmul again uses the PCLMULQDQ instruction to perform carry-
less squarings of 64-bit polynomials. Following the section for interleaving bits pre-
sented in the “Bit Twiddling Hacks” by Sean Eron Anderson [And05], the implemen-
tations ref and no-cache use the following C code twice to compute the square of a
32-bit polynomial represented as 32-bit word:

x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;

By using the code twice we can also compute the square of a 64-bit polynomial.

5.3. KEM ENCRYPTION 49

5.3 KEM encryption
This section shows how QcBits performs the KEM encryption using multiplications
in F2[x]/(xn−1). Section 5.3.1 shows how the error vector is generated. Section 5.3.2
shows how public-syndrome computation is viewed as multiplications in F2[x]/(xn−1).
Section 5.3.3 shows how these multiplications are implemented.

5.3.1 Generating the error vector

The error vector e is generated in essentially the same way as the private key. The
only difference is that for e we need t indices ranging from 0 to N − 1, and there is
only one list of indices instead of two. Note that for hashing it is still required to
generate the dense representation of e.

5.3.2 Polynomial view: public-syndrome computation

The task here is to compute the public syndrome Pe. Let e(0) and e(1) be the first
and second half of e. The public syndrome is then

s = P (0)e(0) + P (1)e(1)

=
∑
i

P
(0)
:,i e

(0)
i +

∑
i

P
(1)
:,i e

(1)
i .

Since P is quasi-cyclic, we have

s(x) =
∑
i

xiP
(0)
:,0 (x)e

(0)
i +

∑
i

xiP
(1)
:,0 (x)e

(1)
i

= P
(0)
:,0 (x)e(0)(x) + P

(1)
:,0 (x)e(1)(x)

= e(0)(x) + P
(1)
:,0 (x)e(1)(x).

In other words, the private syndrome can be computed using one multiplication in
F2[x]/(xn − 1). The multiplication is not generic in the sense that e(1)(x) is sparse.
See below for how the multiplication is implemented in QcBits.

5.3.3 Sparse-times-dense multiplications in F2[x]/(x
n − 1)

The task here can be formalized as computing f (0) + f (1)g(1) ∈ F2[x]/(xn− 1), where
g(1) is represented in the dense representation. f (0) and f (1) are represented together
using an array of indices in I = {i | f (0)i = 1} ∪ {i+ n | f (1)i = 1}, where |I| = t.

One can of course perform this multiplication between f (1) and g(1) in a generic
way, as shown in Section 5.2.3. The implementation clmul indeed generates the
dense representation of f (1) and then computes f (1)g(1) using the PCLMULQDQ instruc-
tion. [MOG15] uses essentially the same technique. The implementations ref and
no-cache however, make use of the sparsity in f (0) and f (1); see below for details.

Now consider the slightly simpler problem of computing h = fg ∈ F2[x]/(xn − 1),
where f is represented as an array of indices in I = {i | fi = 1}, and g is in the dense

50 CHAPTER 5. QCBITS

representation. Then we have
fg =

∑
i∈I

xig.

Therefore, the implementations ref and no-cache first set h = 0. Then, for each
i ∈ I, xig is computed and then added to h. Note that xig is represented as an array
of dn/be b-bit words, so adding xig to h can be implemented using dn/be bitwise-XOR
instructions on b-bit words.

Now the remaining problem is how to compute xig. It is obvious that xig can be
obtained by rotating g by i bits. In order to perform a constant-time rotation, the
implementation ref makes use of the idea of the Barrel shifter [Wik16a]. The idea is
to first represent i in binary representation

(ik−1ik−2 · · · i0)2.

Since i ≤ n− 1, it suffices to use k = blg(n− 1)c+ 1. Then, for j from k− 1 to lg b, a
rotation by 2j bits is performed. One of the unshifted vector and the shifted vector is
chosen (in a constant-time way) and serves as the input for the next j. After dealing
with all ik−1, ik−2, . . . , ilg b, a rotation of (ilg b−1ilg b−2 · · · i0)2 bits is performed using
a sequence of logical instructions.

To clarify the idea, here is a toy example for the case n = 40, b = 8. The polynomial
g is

(x8 + x10 + x12 + x14) + (x16 + x17 + x20 + x21) + (x24 + x25 + x26 + x27)

+ (x36 + x37 + x38 + x39),

which is represented in an array of 5 bytes as

000000002, 010101012, 001100112, 000011112, 111100002.

The goal is to compute xig where i = 0100112. Since blg(40−1)c+1 = 6, the algorithm
begins with computing a rotation of 1000002 = 32 bits, which can be carried out by
moving around the bytes. The result is

010101012, 001100112, 000011112, 111100002, 000000002.

Since the most significant bit is not set, the unshifted polynomial is chosen. Next we
proceed to perform a rotation of 0100002 = 16 bits. The result is

000011112, 111100002, 000000002, 010101012, 001100112.

Since the second most significant bit is set, we choose the rotated polynomial. The
polynomial is then shifted by 0010002 = 8 bits. However, since the third most signifi-
cant bit is not set, the unshifted polynomial is chosen. To handle the least significant
lg b = 3 bits of i, a sequence of logical instructions are used to combine the most
significant 0112 and the least significant 1012 bits of the bytes, resulting in

011000012, 111111102, 000000002, 000010102, 101001102.

5.4. KEM DECRYPTION 51

Note that in [MTS+13] n is required to be a prime (which means n is not divisible
by b), so the example is showing an easier case. Roughly speaking, the implementa-
tion ref performs a rotation as if the vector length is n − (n mod b) and then uses
more instructions to compensate for the effect of the n mod b extra bits. The imple-
mentation no-cache essentially performs a rotation of (ik−1ik−2 · · · ilg b0 · · · 0)2 bits
and then performs a rotation of (ilg b−1ilg b−2 · · · i0)2 bits.

With the constant-time rotation, we can now deal with the original problem of
computing f (0) + f (1)g(1) ∈ F2[x]/(xn − 1). QcBits first sets h = 0. Then for each
i ∈ I, one of either 1 or g(1) is chosen according to whether i < n or not, which has
to be performed in a constant-time way to hide all information about i. The chosen
polynomial is then rotated by i mod n bits, and the result is added to h. Note that
this means the implementations ref and no-cache perform a dummy polynomial
multiplication to hide information about f (0) and f (1).

5.4 KEM decryption
This section shows how QcBits performs the KEM decryption using multiplications
in F2[x]/(xn − 1) and Z[x]/(xn − 1). The KEM decryption is essentially a decoding
algorithm. Each decoding iteration computes

• the private syndrome Hv and

• the counts of unsatisfied parity checks, i.e., the vector u, using the private
syndrome.

Positions in v are then flipped according the counts. Section 5.4.1 shows how private-
syndrome computation is implemented as multiplications in F2[x]/(xn − 1). Sec-
tion 5.4.2 shows how counting unsatisfied parity checks is viewed as multiplications
in Z[x]/(xn − 1). Section 5.4.3 shows how these multiplications in Z[x]/(xn − 1) are
implemented. Section 5.4.4 shows how bit flipping is implemented.

5.4.1 Polynomial view: private-syndrome computation
The public syndrome and the private syndrome are similar in the sense that they are
both computed by matrix-vector products where the matrices are quasi-cyclic. For
the public syndrome the matrix is P and the vector is e. For the private syndrome the
matrix is H and the vector is v. Therefore, the computation of the private syndrome
can be viewed as polynomial multiplication in the same way as the public syndrome.
That is, the private syndrome can be viewed as

H
(0)
:,0 (x)v(0)(x) +H

(1)
:,0 (x)v(1)(x) ∈ F2[x]/(xn − 1).

The computations of the public syndrome and the private syndrome are still a
bit different. For encryption the matrix P is dense, whereas the vector e is sparse.
For decryption the matrix H is sparse, whereas the vector v is dense. However,
the multiplications H(i)

:,0 (x)v(i)(x) are still sparse-times-dense multiplications. QcBits
thus computes the private syndrome using the techniques described in Section 5.3.3.

52 CHAPTER 5. QCBITS

Since the secret key is a sparse representation of H(i)
0,: , we do not immediately

have H(i)
:,0 . This is similar to the situation in public-key generation, where P (1)

:,0 is
derived from P

(1)
0,: . QcBits thus computes H(i)

:,0 from H
(i)
0,: by adjusting each index in

the sparse representation in constant time.

5.4.2 Polynomial view: counting unsatisfied parity checks
Let s = Hv. The vector u of counts of unsatisfied parity checks can be viewed as

uj =
∑
i

Hi,j · si ∈ ZN ,

where Hi,j and sj are treated as integers. In other words,

u =
∑
i

Hi,: · si ∈ ZN .

Let u(0) and u(1) be the first and second half of u, respectively. Now we have:

(
u(0)(x), u(1)(x)

)
=

(∑
i

xiH
(0)
0,: (x) · si,

∑
i

xiH
(1)
0,: (x) · si

)
=
(
H

(0)
0,: (x) · s(x), H

(1)
0,: (x) · s(x)

)
∈ (Z[x]/(xn − 1))

2
.

In other words, the vector u can be computed using 2 multiplications in Z[x]/(xn −
1). Note that the multiplications are not generic: H

(i)
0,: (x) is always sparse, and

the coefficients of H(i)
0,: (x) and s(x) can only be 0 or 1. See below for how such

multiplications are implemented in QcBits.

5.4.3 Sparse-times-dense multiplications in Z[x]/(xn − 1)

The task can be formalized as computing fg ∈ Z[x]/(xn − 1), where fi, gi ∈ {0, 1}
for all i, and f is of weight only w. f is represented as an array of indices in If =
{i | fi = 1}. g is naturally represented as an array of dn/be b-bit values as usual.
Then we have

fg =
∑
i∈If

xig.

Even though all the operations are now in Z[x]/(xn − 1) instead of F2[x]/(xn − 1),
each xig can still be computed using a constant-time rotation as in Section 5.3.3.
Therefore, QcBits first sets h = 0, and then for each i ∈ I, xig is computed using the
constant-time rotation and then added to h. After all the elements in I are processed,
we have h = fg. Note that xig is represented as an array of dn/be b-bit words.

Now the remaining problem is how to add xig to h. A direct way to represent h is
to use an array of n bytes (it suffices to use 1 byte for each coefficient when w/2 < 256,
which is true for all parameter sets in [MTS+13] with N = 2n), each storing one of
the n coefficients. To add xig to h, the naive way is for each coefficient of h to extract

5.4. KEM DECRYPTION 53

1011012

1010002

0001012

0000002

......

Non-bitsliced Bitsliced

0 . . . 1012

0 . . . 0002

0 . . . 1012

0 . . . 0112

0 . . . 0002

0 . . . 0112

8 bits

b

b bits

6

Figure 5.1: Storage of b numbers of unsatisfied parity checks in non-bitsliced
form and bitsliced format.

from the corresponding b-bit word the bit required using one bitwise-AND instruction
and at most one shift instruction, and then to add the bit to the byte using one
addition instruction. In other words, it takes around 3 instructions on average to
update each coefficient of h.

QcBits does better by bitslicing the coefficients of h: Instead of using b bytes,
QcBits uses several b-bit words to store a group of b coefficients, where the i-th b-bit
word stores the i-th least significant bits of the b coefficients. Since the column weight
of H is w/2, it suffices to use blgw/2c + 1 b-bit words. To update b coefficients of
h, a sequence of logical operations is performed on the blgw/2c + 1 b-bit words and
the corresponding b-bit word in xig. These logical instructions simulate b copies of
a circuit for adding a 1-bit number into a (blgw/2c + 1)-bit number. Such a circuit
requires roughly blgw/2c + 1 half adders, so updating b coefficients takes roughly
2(blgw/2c+ 1) logical instructions on b-bit words.

Figure 5.1 illustrates how the b coefficients are stored when w = 90. In the non-
bitsliced approach b bytes are used. In the bitsliced approach blg(90/2)c+ 1 = 6 b-bit
words are used, which account for 6b/8 bytes. Note that this means bitslicing saves
memory. Regarding the number of instructions, it takes (6 · 2)/b logical instructions
on average to update each coefficient. For either b = 32 or b = 64, (6 · 2)/b is much
smaller than 3. Therefore, bitslicing also helps to enhance performance.

The speed that McBits [BCS13] achieves relies on bitslicing as well. However,
the reader should keep in mind that QcBits, as opposed to McBits, makes use of
parallelism that lies intrinsically in one single decryption instance.

5.4.4 Flipping bits

The last step in each decoding iteration is to flip the bits according to the counts.
Since QcBits stores the counts in a bitsliced format, bit flipping is also accomplished

54 CHAPTER 5. QCBITS

in a bitsliced fashion. At the beginning of each decoding iteration, the bitsliced form
of b copies of −t is generated and stored in blgw/2c+ 1 b-bit words. Once the counts
are computed, −t is added to the counts in parallel using logical instructions on b-bit
words. These logical instructions simulate copies of a circuit for adding (blgw/2c+1)-
bit numbers. Such a circuit takes (blgw/2c+1) full adders. Therefore, each ui+(−t)
takes roughly 5(blgw/2c+ 1)/b logical instructions.

The additions are used to generate sign bits for all ui− t, which are stored in two
arrays of dn/be b-bit words. To flip the bits, QcBits simply XORs the complement
of b-bit words in the two arrays into v(0) and v(1). It then takes roughly 1/b logical
instructions to update each vi.

For w = 90, we have 5(blgw/2c + 1)/b + 1b = 31/b, which is smaller than 1 for
either b = 32 or b = 64. In contrast, when the non-bitsliced format is used, the
naive approach is to use at least one subtraction instruction for each ui − t and one
XOR instruction to flip the bit. One can argue that for the non-bitsliced format
there are probably better ways to compute u and perform bit flipping. For example,
one can probably perform several additions/subtractions of bytes in parallel in one
instruction. However, such an approach seems much more expensive than one might
expect as changes of formats between a sequence of bits and bytes are required.

5.5 Experimental results for decoding

This section shows experimental results for QC-MDPC decoding under different pa-
rameter sets. The decoding algorithm used is the precomputed-threshold approach
introduced in Section 5.1.2. The codes are restricted: H(0) and H(1) are required
to have the same row weight. n, w, t have same meaning as in Section 5.1.1. sec
indicates the security level. T is the list of thresholds. If not specified otherwise, the
thresholds are obtained using the formulas in [MTS+13, Appendix A]. S is a list that
denotes how many iterations the tests take. The summation of the numbers in S is
the total number of tests, which is set to 108. The 108 tests consist of 104 decoding
attempts for each of 104 key pairs. The first number in the list indicates the number
of tests that fail to decode in #T iterations (i.e., in the total number of iterations).
The second number indicates the number of tests that succeed after 1 iteration. The
third number indicates the number of tests that succeed after 2 iterations; etc. avg
indicates the average number of iterations for the successful tests.

n = 4801
w = 90
t = 84
sec = 80
T = [29, 27, 25, 24, 23, 23]
S = [0, 0, 752, 69732674, 30232110, 34417, 47]
avg = 3.30

The thresholds are obtained by interactive experiments. QcBits uses this setting.

5.6. THE FUTURE OF QC-MDPC-BASED CRYPTOSYSTEMS 55

n = 4801
w = 90
t = 84
sec = 80
T = [28, 26, 24, 23, 23, 23, 23, 23, 23, 23]
S = [40060, 0, 9794, 87815060, 12079266, 51387, 3833, 519, 70, 10,
1]
avg = 3.12

n = 9857
w = 142
t = 134
sec = 128
T = [44, 42, 40, 37, 36, 36, 36, 36, 36, 36, 36, 36]
S = [689298, 0, 0, 86592, 53307303, 42797368, 2856446, 235479,
24501, 2651, 333, 26, 3]
avg = 4.46

5.6 The future of QC-MDPC-based cryptosystems

QcBits provides a way to perform constant-time QC-MDPC decoding, even on plat-
forms with caches. Moreover, decoding in QcBits is much faster than that in previous
works. However, the fact that the bit-flipping algorithm is probabilistic can be a se-
curity issue. The security proofs in [Per12; Per13] do assume that the KEM is able to
decrypt a KEM ciphertext with “overwhelming probability”. As there is no good way
to estimate the failure rate for a given QC-MDPC code, the best thing people can
do is to run a large number of experiments. QcBits manages to achieve no decoding
failures in 108 trials. Indeed, 108 is not a trivial number, but whether such level of
failure rate is enough to keep the system secure remains unclear, not to mention that
this is for 80-bit security only. See Section 5.5 for more detailed experimental results
on failure rates.

There can be some ways to mitigate the problem. Some researchers are now work-
ing on reducing the failure rate by inventing more sophisticated decoding algorithms.
Some researchers are now working on designing new parameter sets that allow lower
failure rates. Such research is certainly valuable. However, they still do not nec-
essarily answer the question of whether the system is secure under the (most likely
estimated) failure rate.

Another probably less serious problem is that QcBits and all previous implemen-
tation papers [HMG13; MG14a; MG14b; MHG16; MOG15] force the parity check
matrix H to have equal weights in H(0) and H(1), which is not the same as what
was described in [MTS+13]. QcBits restricts the key space in this way to reduce the
failure rate. Of course, one can argue that even if the key space is not restricted, for
a very high probability H(0) and H(1) would still have the same weight. However,
such an argument is valid only if the adversary can only target one system. For an

56 CHAPTER 5. QCBITS

adversary who aims to break one out of many systems, it is still unclear whether such
restriction affects the security. Hopefully researchers will spend time on this problem
also.

6
Auth256: faster binary-field

multiplication and faster binary-field
MACs

NIST’s standard AES-GCM authenticated-encryption scheme uses GHASH to au-
thenticate ciphertext (produced by AES in counter mode) and to authenticate addi-
tional data. GHASH converts its inputs into a polynomial and evaluates that poly-
nomial at a secret element of F2128 = F2[x]/(x128 + x7 + x2 + x + 1), using one
multiplication in F2128 for each 128-bit input block. The cost of GHASH is an im-
portant part of the cost of GCM, and it becomes almost the entire cost when large
amounts of non-confidential data are being authenticated without being encrypted, or
when a denial-of-service attack is sending a flood of forgeries to consume all available
processing time.

Most AES-GCM software implementations rely heavily on table lookups and pre-
sumably leak their keys to cache-timing attacks. Käsper and Schwabe [KS09] (CHES
2009) addressed this problem by introducing a constant-time implementation of AES-
GCM using 128-bit vector instructions. Their GHASH implementation takes 14.4
cycles/byte on one core of an Intel Core 2 processor. On a newer Intel Sandy Bridge
processor the same software takes 13.1 cycles/byte. For comparison, HMAC-SHA1,
which is widely used in Internet applications, takes 6.74 Core 2 cycles/byte and 5.18
Sandy Bridge cycles/byte.

Integer-multiplication hardware. Much better speeds than GHASH were al-
ready provided by constant-time MACs that used integer multiplication rather than
multiplication of polynomials mod 2. Examples include UMAC [BHK+99], Poly1305
[Ber05], and VMAC [Kro07]. Current Poly1305 software from [Moo14b] runs at 1.89

57

58 CHAPTER 6. AUTH256

Core 2 cycles/byte and 1.22 Sandy Bridge cycles/byte. VMAC, which uses “pseudo
dot products” (see Section 6.3), is even faster than Poly1305.

CPUs include large integer-multiplication units to support many different appli-
cations, so it is not a surprise that these MACs are much faster in software than
GHASH (including non-constant-time GHASH software; see [KS09]). However, inte-
ger multiplication uses many more bit operations than multiplication of polynomials
mod 2, so for hardware designers these MACs are much less attractive. MAC choice
is a continuing source of tension between software designers and hardware designers.

New speeds for binary-field MACs. This chapter introduces Auth256, an F2256 -
based MAC at a 2255 security level; and a constant-time software implementation of
Auth256 running at just 1.89 cycles/byte on a Core 2. We also tried our software on a
Sandy Bridge; it runs at just 1.43 cycles/byte. We also have a preliminary Cortex-A8
implementation below 14 cycles/byte.

This new binary-field MAC is not quite as fast as integer-multiplication MACs.
However, the gap is quite small, while the hardware advantages of binary fields are
quite important.

Caveat: All of the above performance figures ignore short-message overhead, and
in particular our software has very large overhead, tens of thousands of cycles. For 32-,
64-, 128-kilobyte messages, our software takes 3.07, 2.44, 2.14 Core 2 cycles per byte.
and 2.85, 2.09, 1.74 Sandy Bridge cycles per byte. This software is designed primarily
for authenticating large files, not for authenticating network packets. However, a
variant of Auth256 (b = 1 in Section 6.5) takes only 0.81 additional cycles/byte
and has much smaller overhead. We also expect that, compared to previous MAC
designs, this variant will allow significantly lower area for high-throughput hardware,
as explained below.

New bit-operation records for binary-field multiplications. The software
speed advantage of Auth256 over GHASH, despite the much higher security level of
Auth256, is easily explained by the following comparison. Schoolbook multiplication
would take 1282 ANDs and approximately 1282 XORs for each 128 bits of GHASH
input, i.e., approximately 256 bit operations per authenticated bit. Computing a
256-bit authenticator in the same way would use approximately 512 bit operations
per authenticated bit. Auth256 uses just 29 bit operations per authenticated bit.

Of course, Karatsuba’s method saves many bit operations at this size. See, e.g.,
[Ber00], [RK03], [CKP+05], [WP06], [GS06], [PL07], [Ber09a], [Ber09b], and [DSV13].
Bernstein’s Karatsuba/Toom combination in [Ber09b] multiplies 256-bit polynomials
using only about 133 · 256 bit operations. Multiplying 256-bit field elements has
only a small overhead. However, 133 bit operations is still much larger than 29 bit
operations.

Our improved number of bit operations is a combination of four factors. The
first factor is faster multiplication: we reduce the cost of multiplication in F2256 from
133 · 256 bit operations to just 22292 ≈ 87 · 256 bit operations. The second factor,
which we do not take credit for, is the use of pseudo dot products to reduce the
number of multiplications by a factor of 2, reducing 87 below 44. The third factor,
which reduces 44 to 32, is an extra speedup from an interaction between the structure

59

of pseudo dot products and the structure of the multiplication algorithms that we use.
The fourth factor, which reduces 32 to just 29, is to use a different field representation
for the input to favor the fast multiplication algorithm we use.

Specifically, we use a fast Fourier transform (FFT) to multiply polynomials in
F28 [x]. The FFT is advertised in algorithm courses as using an essentially linear num-
ber of field additions and multiplications but is generally believed to be much slower
than other multiplication methods for cryptographic sizes. Chapter 4 shows that the
Gao–Mateer FFT (described in section 3) saves time for decryption in McEliece’s
code-based public-key cryptosystem, but the smallest FFT sizes were above 10000
bits (evaluation at every element in F2m , where m ≥ 11). We introduce an improved
additive FFT that uses fewer bit operations than any previously known multiplier for
fields as small as F264 , provided that the fields contain F28 . Our additive FFT, like
many AES hardware implementations, relies heavily on a tower-field representation
of F28 , but benefits from this representation in different ways from AES. The extra
speedup inside pseudo dot products comes from merging inverse FFTs, which requires
breaking the standard encapsulation of polynomial multiplication; see Section 6.3.

The fact that we are optimizing bit operations is also the reason that we expect
our techniques to produce low area for high-throughput hardware. Optimizing the
area of a fully unrolled hardware multiplier is highly correlated with optimizing the
number of bit operations. We do not claim relevance to very small serial multipliers.

Polynomial-multiplication hardware: PCLMULQDQ. Soon after [KS09], in
response to the performance and security problems of AES-GCM software, Intel
added “AES New Instructions” to some of its CPUs. These instructions include
PCLMULQDQ, which computes a 64-bit polynomial multiplication in F2[x].

Krovetz and Rogaway reported in [KR11] that GHASH takes 2 Westmere cy-
cles/byte using PCLMULQDQ. Intel’s Shay Gueron reported in [Gue13] that heavily
optimized GHASH implementations using PCLMULQDQ take 1.79 Sandy Bridge cy-
cles/byte. Our results are faster at a higher security level, although they do require
switching to a different authenticator.

Of course, putting sufficient resources into a hardware implementation will beat
any software implementation. To quantify this, consider what is required for GHASH
to run faster than 1.43 cycles/byte using PCLMULQDQ. GHASH performs one
multiplication for every 16 bytes of input, so it cannot afford more than 22.88 cycles
for each multiplication. If PCLMULQDQ takes t cycles and t is not very small then
presumably Karatsuba is the best approach to multiplication in F2128 , taking 3t cycles
plus some cycles for latency, additions, and reductions.

Fog’s well-known performance survey [Fog16] indicates that t = 7 for AMD Bull-
dozer, Piledriver, and Steamroller and that t = 8 for Intel Sandy Bridge and Ivy
Bridge; on the other hand, t = 2 for Intel Haswell and t = 1 for AMD Jaguar.
Gueron, in line with this analysis, reported 0.40 Haswell cycles/byte for GHASH.

It is quite unclear what to expect from future CPUs. Intel did not put hardware
for PCLMULQDQ into its low-cost “Core i3” lines of Sandy Bridge, Ivy Bridge, and
Haswell CPUs; and obviously Intel is under pressure from other manufacturers of
small, low-cost CPUs. To emphasize the applicability of our techniques to a broad
range of CPUs, we have avoided PCLMULQDQ in our software.

60 CHAPTER 6. AUTH256

6.1 Field arithmetic in F28

This section reports optimized circuits for field arithmetic in F28 . We write “circuit”
here to mean a fully unrolled combinatorial circuit consisting of AND gates and XOR
gates. Our main cost metric is the total number of bit operations, i.e., the total
number of AND gates and XOR gates, although as a secondary metric we try to
reduce the number of registers required in our software.

Subsequent sections use these circuits as building blocks. The techniques also
apply to larger F2s , but F28 is large enough to support the FFTs that we use in this
chapter.

6.1.1 Review of tower fields

We first construct F22 in the usual way as F2[x2]/(x22 + x2 + 1). We write α2 for
the image of x2 in F22 , so α2

2 + α2 + 1 = 0. We represent elements of F22 as linear
combinations of 1 and α2, where the coefficients are in F2. Additions in F22 use 2 bit
operations, namely 2 XORs.

We construct F24 as F22 [x4]/(x24 + x4 + α2), rather than using a polynomial basis
for F24 over F2. We write α4 for the image of x4 in F24 . We represent elements of
F24 as linear combinations of 1 and α4, where the coefficients are in F22 . Additions
in F24 use 4 bit operations.

Finally, we construct F28 as F24 [x8]/(x28 + x8 + α2α4); write α8 for the image
of x8 in F28 ; and represent elements of F28 as F24-linear combinations of 1 and α8.
Additions in F28 use 8 bit operations.

6.1.2 Variable multiplications

A variable multiplication is the computation of ab given a, b ∈ F2s as input. We
say “variable multiplication” to distinguish this operation from multiplication by a
constant; we will optimize constant multiplication later.

For variable multiplication in F22 , we perform a multiplication of a0 + a1x, b0 +
b1x ∈ F2[x] and reduction modulo x2 + x + 1. Here is a straightforward sequence
of 7 operations using schoolbook polynomial multiplication: c0 ← a0 ⊗ b0; c1 ←
a0⊗ b1; c2 ← a1⊗ b0; c3 ← a1⊗ b1; c4 ← c1⊕ c2; c5 ← c0⊕ c3; c6 ← c4⊕ c3. The result
is c5, c6.

For F24 and F28 we use 2-way Karatsuba. Note that since the irreducible polyno-
mials are of the form x2+x+α the reductions involve a different type of multiplication
described below: multiplication of a field element with a constant.

We end up with just 110 bit operations for variable multiplication in F28 . For
comparison, Bernstein [Ber09b] reported 100 bit operations to multiply 8-bit poly-
nomials in F2[x], but reducing modulo an irreducible polynomial costs many extra
operations. A team led by NIST [Tea10], improving upon various previous results
such as [IHT06], reported 117 bit operations to multiply in F2[x] modulo the AES
polynomial x8 + x4 + x3 + x+ 1.

6.1. FIELD ARITHMETIC IN F28 61

6.1.3 Constant multiplications

A constant multiplication in F2s is the computation of αb given b ∈ F2s as input
for some constant α ∈ F2s . This is trivial for α ∈ F2 so we focus on α ∈ F2s\F2.
One can substitute a specific α into our 110-gate circuit for variable multiplication to
obtain a circuit for constant multiplication, and then shorten the circuit by eliminating
multiplications by 0, multiplications by 1, additions of 0, etc.; but for small fields it
is much better to use generic techniques to optimize the cost of multiplying by a
constant matrix.

Our linear-map circuit generator combines various features of Paar’s greedy addi-
tive common-subexpression elimination algorithm [Paa97] and Bernstein’s two-ope-
rand “xor-largest” algorithm [Ber09c]. For α ∈ F28\F2 our constant-multiplication
circuits use 14.83 gates on average. Compared to Paar’s results, this is slightly more
gates but is much better in register use; compared to Bernstein’s results, it is consid-
erably fewer gates.

The real importance of the tower-field construction for us is that constant mul-
tiplications become much faster when the constants are in subfields. Multiplying an
element of F28 by a constant α ∈ F24\F2 takes only 7.43 gates on average, and mul-
tiplying an element of F28 by a constant α ∈ F22\F2 takes only 4 gates on average.
The constant multiplications in our FFT-based multiplication algorithms for F2256

(see Section 6.2) are often in subfields of F28 , and end up using only 9.02 gates on
average.

6.1.4 Subfields and decomposability

A further advantage of the tower-field construction, beyond the number of bit opera-
tions, is that it allows constant multiplications by subfield elements to be decomposed
into independent subcomputations. For example, when an F28 element in this repre-
sentation is multiplied by a constant in F22 , the computation decomposes naturally
into 4 independent subcomputations, each of which takes 2 input bits to 2 output
bits.

Decomposability is a nice feature for software designers; it guarantees a smaller
working set, which in general implies easier optimization, fewer memory operations
and cache misses, etc. The ideal case is when the working set can fit into registers;
in this case the computation can be done using the minimum number of memory
accesses. Section 6.4 gives an example of how decomposability can be exploited to
help optimization of a software implementation.

The decomposition of multiplication by a constant in a subfield has the extra fea-
ture that the subcomputations are identical. This allows extra possibilities for efficient
vectorization in software, and can also be useful in hardware implementations that
reuse the same circuit several times. Even when subcomputations are not identical,
decomposability increases flexibility of design and is desirable in general.

62 CHAPTER 6. AUTH256

6.2 Faster additive FFTs

Given a 2m−1-coefficient polynomial f with coefficients in F28 , a size-2m additive FFT
computes f(0), f(βm), f(βm−1), f(βm + βm−1), f(βm−2), etc., where βm, . . . , β2, β1
are F2-linearly independent elements of F28 specified by the algorithm. We always
choose a “Cantor basis”, i.e., elements βm, . . . , β2, β1 satisfying β2

i+1 + βi+1 = βi and
β1 = 1; specifically, we take β1 = 1, β2 = α2, β3 = α4 + 1, β4 = α2α4, β5 = α8, and
β6 = α2α8 + α2α4 + α2 + 1. We do not need larger FFT sizes in this chapter.

Our additive FFT is an improvement of the Bernstein–Chou–Schwabe [BCS13]
additive FFT, which in turn is an improvement of the Gao–Mateer [GM10] additive
FFT described in Chapter 3. This section presents details of our size-4, size-8, and
size-16 additive FFTs over F28 . All of our improvements are already visible for size
16. At the end of the section gate counts for all sizes are collected and compared with
state-of-the-art Karatsuba/Toom-based methods.

6.2.1 Size-4 FFTs: the lowest level of recursion

Given a polynomial f = a+ bx ∈ F28 [x], the size-4 FFT computes f(0) = a, f(β2) =
a+β2b, f(1) = a+b, f(β2 +1) = a+(β2 +1)b. Recall that β2 = α2 so β2

2 +β2 +1 = 0.
The size-4 FFT is of interest because it serves as the lowest level of recursion for
larger-size FFTs.

As mentioned in Section 6.1, since β2 ∈ F22 , the size-4 FFT can be viewed as a
collection of 4 independent pieces, each dealing with only 2 out of the 8 bits.

Let a0, a1 be the first 2 bits of a; similarly for b. Then a0, a1 and b0, b1 represent
a0+a1β2, b0+b1β2 ∈ F22 . Since β2(a0+a1β2) = a1+(a0+a1)β2, a 6-gate circuit that
carries out the size-4 FFTs operations on the first 2 bits is c00 ← a0; c01 ← a1; c20 ←
a0⊕b0; c21 ← a1⊕b1; c10 ← a0⊕b1; c31 ← a1⊕b0; c11 ← c31⊕b1; c30 ← c10⊕b0. Then
c00, c01 is the 2-bit result of a; c10, c11 is the 2-bit result of a+β2b; similarly for c20, c21
and c30, c31. In conclusion, a size-4 FFT can be carried out using a 6 · 4 = 24-gate
circuit.

The whole computation costs the same as merely 3 additions in F28 . This is the
result of having evaluation points lie in the smallest possible subfield, namely F22 ,
and using the tower-field construction for F28 .

6.2.2 The size-8 FFTs: the first recursive case

Given a polynomial f = f0 + f1x + f2x
2 + f3x

3 ∈ F28 [x], the size-8 FFT computes
f(0), f(β3), f(β2), f(β2 + β3), f(1), f(β3 + 1), f(β2 + 1), f(β2 + β3 + 1). Recall that
β3 = α4 + 1 so β2

3 + β3 + β2 = 0. The size-8 FFT is of interest because it is the
smallest FFT that involves recursion.

In general, a recursive size-2m FFT starts with a radix conversion that computes
f (0) and f (1) such that f = f (0)(x2 +x)+xf (1)(x2 +x). When f is a 2m−1-coefficient
polynomial we call this a size-2m−1 radix conversion. Since the size-4 radix conversion
can be viewed as a change of basis in F4

2, each coefficient in f (0) and f (1) is a subset
sum of f0, f1, f2, and f3. In fact, f (0) = f0 +(f2 +f3)x and f (1) = (f1 +f2 +f3)+f3x
can be computed using exactly 2 additions.

6.2. FASTER ADDITIVE FFTS 63

After the radix conversion, 2 size-4 FFTs are invoked to evaluate f (0), f (1) at
02 + 0 = 0, β2

3 + β3 = β2, β2
2 + β2 = 1, and (β2 + β3)2 + (β2 + β3) = β2 + 1. Each of

these size-4 FFTs takes 24 bit operations.
Note that we have

f(α) = f (0)(α2 + α) + αf (1)(α2 + α),

f(α+ 1) = f (0)(α2 + α) + (α+ 1)f (1)(α2 + α).

Starting from f (0)(α2 + α) and f (1)(α2 + α), Gao and Mateer multiply f (1)(α2 + α)
by α and add f (0)(α2 + α) to obtain f(α), and then add f (1)(α2 + α) with f(α) to
obtain f(α+ 1). We call this a muladdadd operation.

The additive FFT thus computes all the pairs f(α), f(α+1) at once: given f (0)(0)
and f (1)(0) apply muladdadd to obtain f(0) and f(1), given f (0)(β2) = f (0)(β2

3 + β3)
and f (1)(β2) = f (1)(β2

3+β3) apply muladdadd operation to obtain f(β3) and f(β3+1),
and so on.

The way that the output elements form pairs is a result of having 1 as the last
basis element. In general the Gao–Mateer FFT is able to handle the case where 1 is
not in the basis with some added cost, but here we avoid the cost by making 1 the
last basis element.

Generalizing this to the case of size-2m FFTs implies that the i-th output element
of f (0) and f (1) work together to form the ith and (i + 2m−1)th output element for
f . We call the collection of muladdadds that are used to combine 2 size-2m−1 FFT
outputs to form a size-2m FFT output a size-2m combine routine.

We use our circuit generator introduced in Section 6.1 to generate the circuits for
all the constant multiplications. The muladdadds take a total of 76 gates. Therefore,
a size-8 FFT can be carried out using 2 · 8 + 2 · 24 + 76 = 140 gates.

Note that for a size-8 FFT we again benefit from the special basis and the F28

construction. The recursive calls still use the good basis β2, 1 so that there are only
constant multiplications by F22 elements. The combine routine, although not having
only constant multiplications by F22 elements, at least has only constant multiplica-
tions by F24 elements.

6.2.3 The size-16 FFTs: saving additions for radix conversions

The size-16 FFT is the smallest FFT in which non-trivial radix conversions happen
in recursive calls. Gao and Mateer presented an algorithm performing a size-2n radix
conversion using (n− 1)2n−1 additions. We do better by combining additions across
levels of recursion.

The size-8 radix conversion finds f (0), f (1) such that f = f (0)(x2 +x)+xf (1)(x2 +
x). The two size-4 radix conversion in size-8 FFT subroutines find f (i0), f (i1) such
that f (i) = f (i0)(x2 + x) + xf (i1)(x2 + x) for i ∈ {0, 1}. Combining all these leads to
f = f (00)(x4 + x) + (x2 + x)f (01)(x4 + x) + xf (10)(x4 + x) + x(x2 + x)f (11)(x4 + x).

In the end the size-8 and the two size-4 radix conversions together compute from
f the following: f (00) = f0 + (f4 + f7)x, f (01) = (f2 + f3 + f5 + f6) + (f6 + f7)x,
f (10) = (f1 +f2 +f3 +f4 +f5 +f6 +f7) + (f5 +f6 +f7)x, and f (11) = (f3 +f6) +f7x.
The Gao–Mateer algorithm takes 12 additions for this computation, but one sees by

64 CHAPTER 6. AUTH256

hand that 8 additions suffice. One can also obtain this result by applying the circuit
generator introduced in Section 6.1. Here is an 8-addition sequence generated by the
circuit generator: f (00)0 ← f0; f

(11)
1 ← f7; f

(00)
1 ← f4+f7; f

(01)
0 ← f2+f5; f

(11)
0 ← f3+

f6; f
(01)
1 ← f6+f7; f

(10)
0 ← f1+f

(00)
1 ; f

(10)
1 ← f5+f

(01)
1 ; f

(01)
0 ← f

(01)
0 +f

(11)
0 ; f

(10)
0 ←

f
(10)
0 + f

(01)
0 .

We applied the circuit generator for larger FFTs and found larger gains. A size-32
FFT, in which the input is a size-16 polynomial, requires 31 rather than 48 additions
for radix conversions. A size-64 FFT, in which the input is a size-32 polynomial,
requires 82 rather than 160 additions for radix conversions.

We also applied our circuit generator to the muladdadds, obtaining a 170-gate
circuit for the size-16 combined routine and thus a size-16 FFT circuit using 8 · 8 +
4 · 24 + 2 · 76 + 170 = 482 gates.

6.2.4 Size-16 FFTs continued: decomposition at field-element
level

The size-16 FFT also illustrates the decomposability of the combine routines of a
FFT. Consider the size-16 and size-8 combine routines; the computation takes as
input the FFT outputs for the f (ij)’s to compute the FFT output for f .

Let the output for f be a0, a1, . . . , a15, the output for f (i) be a(i)0 , a
(i)
1 , . . . , a

(i)
7 ,

and similarly for f (ij). For k ∈ {0, 1, 2, 3}, ak, ak+8 are functions of a(0)k and a
(1)
k ,

which in turn are functions of a(00)k , a(01)k , a(10)k , and a(11)k ; ak+4, ak+12 are functions
of a(0)k+4 and a(1)k+4, which in turn are functions of the same 4 elements. We conclude
that ak, ak+4, ak+8, ak+12 depend only on a

(00)
k , a(01)k , a(10)k , and a

(11)
k . In this way,

the computation is decomposed into 4 independent parts; each takes as input 4 field
elements and outputs 4 field elements. Note that here the decomposition is at the
field-element level, while Section 6.1 considered decomposability at the bit level.

More generally, for size-2m FFTs we suggest decomposing k levels of combine
routines into 2m−k independent pieces, each taking 2k F28 elements as input and
producing 2k F28 elements as output.

6.2.5 Improvements: a summary

We have two main improvements to the additive FFT: reducing the cost of multipli-
cations and reducing the number of additions in radix conversion. We also use these
ideas to accelerate size-32 and size-64 FFTs, and obviously they would also save time
for larger FFTs.

The reduction in the cost of multiplications is a result of (1) choosing a “good”
basis for which constant multiplications use constants in the smallest possible subfield;
(2) using a tower-field representation to accelerate those constant multiplications; and
(3) searching for short sequences of additions. The reduction of additions for radix
conversion is a result of (1) merging radix conversion at different levels of recursion
and again (2) searching for short sequences of additions.

6.3. THE AUTH256 MESSAGE-AUTHENTICATION CODE 65

b forward pointwise inverse total competition
16 2 · 24 4 · 110 60 448 ≈ 14 · 2 · 16 350 ≈ 10.9 · 2 · 16
32 2 · 140 8 · 110 228 1388 ≈ 21.7 · 2 · 32 1158 ≈ 18.1 · 2 · 32
64 2 · 482 16 · 110 746 3470 ≈ 27.1 · 2 · 64 3682 ≈ 28.8 · 2 · 64
128 2 · 1498 32 · 110 2066 8582 ≈ 33.5 · 2 · 128 11486 ≈ 44.9 · 2 · 128
256 2 · 4068 64 · 110 5996 21172 ≈ 41.4 · 2 · 256 34079 ≈ 66.6 · 2 · 256

Table 6.1: Cost of multiplying b/8-coefficient polynomials over F28 . “Forward”
is the cost of two size-b/4 FFTs with size-b/8 inputs. “Pointwise” is the cost of
pointwise multiplication. “Inverse” is the cost of an inverse size-b/4 FFT. “Total” is
the sum of forward, pointwise, and inverse. “Competition” is the cost from [Ber09b]
of an optimized Karatsuba/Toom multiplication of b-coefficient polynomials over
F2; note that slight improvements appear in [DSV13].

6.2.6 Polynomial multiplications: a comparison with Karat-
suba and Toom

Just like other FFT algorithms, any additive FFT can be used to multiply polyno-
mials. Given two 2m−1-coefficient polynomials in F2s , we apply a size-2m additive
FFT to each polynomial, a pointwise multiplication consisting of 2m variable multi-
plications in F2s , and a size-2m inverse additive FFT, i.e., the inverse of an FFT with
both input and output size 2m. An FFT (or inverse FFT) with input and output size
2m is slightly more expensive than an FFT with input size 2m−1 and output size 2m:
input size 2m−1 is essentially input size 2m with various 0 computations suppressed.

Table 6.1 summarizes the number of bit operations required for multiplying b-
bit (i.e., b/8-coefficient) polynomials in F28 [x]. Field multiplication is slightly more
expensive than polynomial multiplication. For F2256 we use the polynomial x32+x17+
x2 + α8; reduction costs 992 bit operations. However, as explained in Section 6.3, in
the context of Auth256 we can almost eliminate the inverse FFT and the reduction,
and eliminate many operations in the forward FFTs, making the additive FFT even
more favorable than Karatsuba.

6.3 The Auth256 message-authentication code: ma-
jor features

Auth256, like GCM’s GHASH, follows the well-known Wegman–Carter [WC81] recipe
for building a MAC with (provably) information-theoretic security. The recipe is to
apply a (provably) “δ-xor-universal hash” to the message and to encrypt the result
with a one-time pad. Every forgery attempt then (provably) has success probability
at most δ, no matter how much computer power the attacker used.

Of course, real attackers do not have unlimited computer power, so GCM actually
replaces the one-time pad with counter-mode AES output to reduce key size. This is
safe against any attacker who cannot distinguish AES output from uniform random;
see, e.g., [IOM12, comments after Corollary 3]. Similarly, it is safe to replace the
one-time pad in Auth256 with cipher output.

66 CHAPTER 6. AUTH256

This section presents two important design decisions for Hash256, the hash func-
tion inside Auth256. Section 6.3.1 describes the advantages of the Hash256 output
size. Section 6.3.2 describes the choice of pseudo dot products inside Hash256, and the
important interaction between FFTs and pseudo dot products. Section 6.3.3 describes
the use of a special field representation for inputs to reduce the cost of FFTs.

Section 6.5 presents, for completeness, various details of Hash256 and Auth256
that are not relevant to this chapter’s performance evaluation.

6.3.1 Output size: bigger-birthday-bound security

Hash256 produces 256-bit outputs, as its name suggests, and Auth256 produces 256-
bit authenticators. Our multiplication techniques are only slightly slower per bit for
F2256 than for F2128 , so Auth256 is only slightly slower than an analogous Auth128
would be. An important advantage of an increased output size is that one can safely
eliminate nonces.

Encrypting a hash with a one-time pad, or with a stream cipher such as AES in
counter mode, requires a nonce, and becomes insecure if the user accidentally repeats
a nonce; see, e.g., [HP08]. Directly applying a PRF (as in HMAC) or PRP (as in
WMAC) to the hash, without using a nonce, is much more resilient against misuse but
becomes insecure if hashes collide, so b-bit hashes are expected to be broken within
2b/2 messages (even with an optimal δ = 2−b) and already provide a noticeable attack
probability within somewhat fewer messages.

This problem has motivated some research into “beyond-birthday-bound” mecha-
nisms for authentication and encryption that can safely be used for more than 2b/2

messages. See, e.g., [LST12]. Hash256 takes a different approach, which we call
“bigger-birthday-bound” security: simply increasing b to 256 (and correspondingly re-
ducing δ) eliminates all risk of collisions. For the same reason, Hash256 provides extra
strength inside other universal-hash applications, such as wide-block disk encryption;
see, e.g., [Hal07].

In applications with space for only 128-bit authenticators, it is safe to simply
truncate the Hash256 and Auth256 output from 256 bits to 128 bits. This increases
δ from 2−255 to 2−127.

6.3.2 Pseudo dot products and FFT addition

Hash256 uses the same basic construction as UMAC [BHK+99], Badger [BSP+05],
NMH [HK97, Section 5], and VMAC [Kro07]: the hash of a message with blocks
m1, m2, m3, m4, . . . is (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · · . Halevi
and Krawczyk [HK97] credit this hash to Carter and Wegman; Bernstein [Ber07a]
credits it to Winograd and calls it the “pseudo dot product”. The pseudo-dot-product
construction of Hash256 gives δ < 2−255; see Section 6.6 for the proof.

A simple dot product m1r1+m2r2+m3r3+m4r4+ · · · uses one multiplication per
block. The same is true for GHASH and many other polynomial-evaluation hashes.
The basic advantage of (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · · is that there
are only 0.5 multiplications per block.

6.3. THE AUTH256 MESSAGE-AUTHENTICATION CODE 67

For Auth256 each block contains 256 bits, viewed as an element of the finite field
F2256 . Our cost of Auth256 per 512 authenticated bits is 29 · 512 = 58 · 256 bit
operations, while our cost for a multiplication in F2256 is 87 · 256 bit operations. We
now explain one of the two sources of this gap.

FFT-based multiplication of two polynomials f1f2 has several steps: apply an FFT
to evaluate f1 at many points; apply an FFT to evaluate f2 at many points; compute
the corresponding values of the product f1f2 by pointwise multiplication; and apply
an inverse FFT to reconstruct the coefficients of f1f2. FFT-based multiplication of
field elements has the same steps plus a final reduction step.

These steps for F2256 , with our optimizations from Section 6.2, cost 4068 bit op-
erations for each forward FFT, 64 · 110 bit operations for pointwise multiplication,
5996 bit operations for the inverse FFT (the forward FFT is less expensive since
more polynomial coefficients are known to be 0), and 992 bit operations for the final
reduction. Applying these steps to each 512 bits of input would cost approximately
15.89 bit operations per bit for the two forward FFTs, 13.75 bit operations per bit for
pointwise multiplication, 11.71 bit operations per bit for the inverse FFT, and 1.94
bit operations per bit for the final reduction, plus 1.5 bit operations per bit for the
three additions in the pseudo dot product.

We do better by exploiting the structure of the pseudo dot product as a sum of the
form f1f2 + f3f4 + f5f6 + · · · . Optimizing this computation is not the same problem
as optimizing the computation of f1f2. Specifically, we apply an FFT to each fi and
compute the corresponding values of f1f2, f3f4, etc., but we then add these values
before applying an inverse FFT. See Figure 6.1. There is now only one inverse FFT
(and one final reduction) per message, rather than one inverse FFT for every two
blocks. Our costs are now 15.89 bit operations per bit for the two forward FFTs,
13.75 bit operations per bit for pointwise multiplication, 1 bit operation per bit for
the input additions in the pseudo dot product, and 1 bit operation per bit for the
pointwise additions, for a total of 31.64 bit operations per bit, plus a constant (not
very large) overhead per message.

This idea is well known in the FFT literature (see, e.g., [Ber08a, Section 2]) but
we have never seen it applied to message authentication. It reduces the cost of FFT-
based message authentication by a factor of nearly 1.5. Note that this also reduces
the cutoff between FFT and Karatsuba.

UMAC and VMAC actually limit the lengths of their pseudo dot products, to
limit key size. This means that longer messages produce two or more hashes; these
hashes are then further hashed in a different way (which takes more time per byte
but is applied to far fewer bytes). For simplicity we instead use a key as long as
the maximum message length. We have also considered the small-key hashes from
[Ber07a] but those hashes obtain less benefit from merging inverse FFTs.

6.3.3 Embedding invertible linear operations into FFT inputs

Section 6.3.2 shows how to achieve 31.64 bit operations per message bit by skipping
the inverse FFTs for almost all multiplications in the pseudo dot product. Now we
show how Auth256 achieves 29 bit operations per message bit by skipping operations
in the forward FFTs.

68 CHAPTER 6. AUTH256

m1 k1 m2 k2

+ +

FFT FFT

×

m3 k3 m4 k4

+ +

FFT FFT

×

+

m5 k5 m6 k6

+ +

FFT FFT

×

+

m7 k7 m8 k8

+ +

FFT FFT

×

+

IFFT, reduction

Hash256k(m)

Figure 6.1: Hash256 flowchart

Section 6.2.3 shows that the radix conversions can be merged into one invertible
F28-linear (actually F2-linear) map, which takes place before all other operations in
the FFT. The input is a F2256 element which is represented as coefficients in F28 with
respect to a polynomial basis. Applying an invertible linear map on the coefficients
implies a change of basis. In other words, the radix conversions convert the input
into another 256-bit representation. If we define the input to be elements in this
new representation, all the radix conversions can simply be skipped. Note that the
authenticator still uses the original representation. See Section 6.5.2 for a definition
of the new representation.

This technique saves a significant fraction of the operations in the forward FFT.
As shown in Section 6.2, one forward FFT takes 4068 bit operations, where 82·8 = 656
of them are spent on radix conversions. Eliminating all radix conversions then gives
the 29 bit operations per message bit.

The additive FFTs described so far are “2-way split” FFTs since they require writ-
ing the input polynomial f(x) in the form f (0)(x2 + x) + xf (1)(x2 + x). It is easy to
generalize this to a “2k-way split” in which f(x) is written as

∑2k−1
i=0 xif (i)(ψk(x)),

where ψ(x) = x2 + x. In particular, Gao and Mateer showed how to perform 22
k−1

-
way-split FFTs for polynomials in F

22k
[x]. The technique of changing input represen-

tation works for any 2k-way split. In fact we found that with 8-way-split FFTs, the
number of bit operations per message bit can be slightly better than 29. However,
for simplicity, Auth256 is defined in a way that favors 2-way-split FFTs.

6.4 Software implementation

Our software implementation uses bitslicing. This means that we convert each bit
in previous sections into w bits, where w is the register width on the machine; we

6.4. SOFTWARE IMPLEMENTATION 69

convert each AND into a bitwise w-bit AND instruction; and we convert each XOR
into a bitwise w-bit XOR instruction.

Bitslicing is efficient only if there is adequate parallelism in the algorithm. Fortu-
nately, the pseudo-dot-product computation is naturally parallelizable: we let the jth
bit position compute the sum of all products (m2i+1 + r2i+1)(m2i+2 + r2i+2) where
i ≡ j (mod w). After all the products are processed, the results in all bit positions
are summed up to get the final value.

The detailed definition of Auth256 (see Section 6.5) has a parameter b. Our
software takes b = w, allowing it to simply pick up message blocks as vectors. If b
is instead chosen as 1 then converting to bitsliced form requires a transposition of
message blocks; in our software this transposition costs an extra 0.81 cycles/byte.

6.4.1 Minimizing memory operations in radix conversions

We exploit the decomposability of additions to minimize memory operations for a
radix conversion. When dealing with size-2k radix conversions with k ≤ 4, we de-
compose at bit level the computation into 2k parts, each of which deals with 16/2k

bit positions. This minimizes the number of loads and stores. The same technique
applies for a radix conversion combined with smaller-size radix conversions in the
FFT subroutines.

Our implementation uses the size-16 FFT as a subroutine. Inside a size-16 FFT
the size-8 radix conversion is combined with the 2 size-4 radix conversions in FFT
subroutines. Our bit-operation counts handle larger radix conversions in the same
way, but in our software we sacrifice some of the bit operations saved here to improve
instruction-level parallelism and register utilization. For size-16 radix conversion the
decomposition method is adopted. For size-32 radix conversion the decomposition
method is used only for the size-16 recursive calls.

6.4.2 Minimizing memory operations in muladdadd operations

For a single muladdadd operation a← a+ αb; b← b+ a, each of a and b consumes 8
vectors; evidently at least 16 loads and 16 stores are required. While we showed how
the sequence of bit operations can be generated, it does not necessarily mean that
there are enough registers to carry out the bit operations using the minimum number
of loads and stores.

Here is one strategy to maintain both the number of bit operations and the lower
bound on number of loads and stores. First load the 8 bits of b into 8 registers
t0, t1, . . . , t7. Use the sequence of XORs generated by the code generator, starting
from the ti’s, to compute the 8 bits of αb, placing them in the other 8 registers
s0, s1, . . . , s7. Then perform si ← si ⊕ a[i], where a[i] is the corresponding bit of a
in memory, to obtain a + αb. After that overwrite a with the si’s. Finally, perform
ti ← ti ⊕ si to obtain a+ (α+ 1)b, and overwrite b with the ti’s.

In our software muladdadd operations are handled one by one in size-64 and size-
32 combine routines. See below for details about how muladdadds in smaller size
combine routines are handled.

70 CHAPTER 6. AUTH256

6.4.3 Implementing the size-16 additive FFT

In our size-16 FFT implementation the size-8 radix conversion is combined with the
two size-4 ones in the FFT subroutines using the decomposition method described
earlier in this section. Since the size-4 FFTs deal with constants in F22 , we further
combine the radix conversions with size-4 FFTs.

At the beginning of one of the 4 rounds of the whole computation, the 2 · 8 = 16
bits of the input for size-8 radix conversion are loaded. Then the logic operations are
carried out in registers, and eventually the result is stored in 2 · 16 = 32 bits of the
output elements. The same routine is repeated 4 times to cover all the bit positions.

The size-16 and size-32 combine routines are also merged as shown in Section 6.2.
The field-level decomposition is used together with a bit-level decompostion: in size-
16 FFT all the constants are in F24 , so it is possible to decompose any computation
that works on field elements into a 2-round procedure and handle 4 bit positions in
each round. In conclusion, the field-level decomposition turns the computation into 4
pieces, and the bit-level decompostion further decomposes each of these into 2 smaller
pieces. In the end, we have an 8-round procedure.

At the beginning of one of the 8 rounds of the whole computation, the 4 · 4 = 16
bits of the outputs of the size-4 FFTs are loaded. Then the logic operations are carried
out in registers, and eventually the result is stored in 4 · 4 = 16 bits of the output
elements. The same routine is repeated 8 times to cover all the bit positions.

6.5 Auth256: minor details

To close we fill in, for completeness, the remaining details of Hash256 and Auth256.

6.5.1 Review of Wegman–Carter MACs

Wegman–Carter MACs work as follows. The authenticator of the nth message m is
H(r,m) ⊕ sn. The key consists of independent uniform random r, s1, s2, s3, . . .; the
pad is s1, s2, s3,

The hash function H is designed to be “δ-xor-universal”, i.e., to have “differential
probability at most δ”. This means that, for every message m, every message m′ 6=
m, and every difference ∆, a uniform random r has H(r,m) ⊕ H(r,m′) = ∆ with
probability at most δ.

6.5.2 Field representation

We represent an element of F2s as a sequence of s bits. If we construct F2s as
F2t [x]/φ then we recursively represent the element c0 + c1x + · · · + ct/s−1x

t/s−1 as
the concatenation of the representations of c0, c1, . . . , ct/s−1. At the bottom of the
recursion, we represent an element of F2 as 1 bit in the usual way. See Sections 6.1
and 6.2.6 for the definition of φ for F22 , F24 , F28 , and F2256 .

As mentioned in Section 6.3.3, we do not use the polynomial basis 1, x, . . . , x31

for F2256 inputs. Here we define the representation for them. Let y(bk−1bk−2···b0)2 =∏k−1
i=0 (ψi(x))bi , where ψ(x) follows the definition in Section 6.3.3. Then each F2256

6.5. AUTH256: MINOR DETAILS 71

input c0y0 + c1y1 + · · ·+ c31y31 is defined as the concatenation of the representations
of c0, c1, . . . , c31. One can verify that y0, y1, . . . , y31 is the desired basis by writing
down the equation between f(x) and f (00000)(x), f (00001)(x), . . . , f (11111)(x) as in
Section 6.2.3.

If s ≥ 8 then we also represent an element of F2s as a sequence of s/8 bytes, i.e.,
s/8 elements of {0, 1, . . . , 255}. The 8-bit sequence b0, b1, . . . , b7 is represented as the
byte b =

∑
i 2ibi.

6.5.3 Hash256 padding and conversion

Hash256 views messages as elements of K0 ∪K2 ∪K4 ∪ · · · , i.e., even-length strings
of elements of K, where K is the finite field F2256 . It is safe to use a single key with
messages of different lengths.

In real applications, messages are strings of bytes, so strings of bytes need to be
encoded invertibly as strings of elements of K. The simplest encoding is standard
“10∗” padding, where a message is padded with a 1 byte and then as many 0 bytes as
necessary to obtain a multiple of 64 bytes. Each 32-byte block is then viewed as an
element of K.

We define a more general encoding parametrized by a positive integer b; the en-
coding of the previous paragraph has b = 1. The message is padded with a 1 byte
and then as many 0 bytes as necessary to obtain a multiple of 64b bytes, say 64bN
bytes. These bytes are split into 2N segments M0,M

′
0,M1,M

′
1, . . . ,MN−1,M

′
N−1,

where each segment contains 32b consecutive bytes. Each segment is then trans-
posed into b elements of K: segment Mi is viewed as a column-major bit ma-
trix with b rows and 256 columns, and row j of this matrix is labeled cbi+j , while
c′bi+j is defined similarly using M ′i . This produces 2bN elements of K, namely
m0,m

′
0,m1,m

′
1,m2,m

′
2, . . . ,mbN−1,m

′
bN−1.

The point of this encoding is to allow a simple bitsliced vectorized implementa-
tion; see Section 6.4. Our 1.59 cycle/byte implementation uses b = 256. We have
also implemented b = 1, which costs 0.81 cycles/byte extra for transposition and is
compatible with efficient handling of much shorter messages. An interesting interme-
diate possibility is to take, e.g., b = 8, eliminating the most expensive (non-bytewise)
transposition steps while still remaining suitable for authentication of typical network
packets.

6.5.4 Hash256 and Auth256 keys and authenticators

The Hash256 key is a uniform random byte string of the same length as a maximum-
length padded message, representing elements r0, r′0, r1, r′1, . . . of K. If the key is
actually defined as, e.g., counter-mode AES output then the maximum length does
not need to be specified in advance: extra key elements can be computed on demand
and cached for subsequent use.

The Hash256 output is (m0 + r0)(m′0 + r′0) + (m1 + r1)(m′1 + r′1) + · · · . This is an
element of K.

The Auth256 key is a Hash256 key together with independent uniform random
elements s1, s2, . . . of K. The Auth256 authenticator of the nth message mn is

72 CHAPTER 6. AUTH256

Auth256(r,mn)⊕ sn.

6.6 Security proof
This section proves that Hash256 has differential probability smaller than 2−255. This
is not exactly the same as the proofs for the pseudo-dot-product portions of UMAC
and VMAC: UMAC and VMAC specify fixed lengths for their pseudo dot products,
whereas we allow variable lengths.

Theorem 1. Let K be a finite field. Let `, `′, k be nonnegative integers with ` ≤ k
and `′ ≤ k. Let m1,m2, . . . ,m2`−1,m2` be elements of K. Let m′1,m′2, . . . ,m′2`′−1,
m′2`′ be elements of K. Assume that (m1,m2, . . . ,m2`) 6= (m′1,m

′
2, . . . ,m

′
2`′). Let ∆

be an element of K. Let r1, r2, . . . , r2k be independent uniform random elements of
k. Let p be the probability that h = h′ + ∆, where

h = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·
+ (m2`−1 + r2`−1)(m2` + r2`),

h′ = (m′1 + r1)(m′2 + r2) + (m′3 + r3)(m′4 + r4) + · · ·
+ (m′2`′−1 + r2`′−1)(m′2`′ + r2`′).

Then p < 2/#K. If ` = `′ then p ≤ 1/#K, and if ` 6= `′ then p < 1/#K+1/#K|`−`
′|.

Proof. Case 1: ` = `′. Then h = h′ + ∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
= ∆ +m′1m

′
2 −m1m2 +m′3m

′
4 −m3m4 + · · · .

This is a linear equation in r1, r2, . . . , r2k. This linear equation is nontrivial: by
hypothesis (m1,m2, . . . ,m2`) 6= (m′1,m

′
2, . . . ,m

′
2`′), so there must be some i for which

mi −m′i 6= 0. Consequently there are most #K2k−1 solutions to the equation out of
the #K2k possibilities for r; i.e., p ≤ 1/#K as claimed.

Case 2: ` < `′ and (m1, . . . ,m`) 6= (m′1, . . . ,m
′
`). Define

f = (m′2`+1 + r2`+1)(m2`+2 + r2`+2) + · · ·+ (m′2`′−1 + r2`′−1)(m′2`′ + r2`′).

Then h = h′ + ∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
+ r2`−1(m2` −m′2`) + r2`(m2`−1 −m′2`−1)

= f + ∆ +m′1m
′
2 −m1m2 +m′3m

′
4 −m3m4 + · · ·+m′2`−1m

′
2` −m2`−1m2`.

This is a linear equation in r1, . . . , r2`, since f is independent of r1, . . . , r2`. For each
choice of (r2`+1, r2`+2, . . . , r2k), there are at most #K2`−1 choices of (r1, . . . , r2`)
satisfying this linear equation. Consequently p ≤ 1/#K as above.

Case 3: ` < `′ and (m1, . . . ,m`) = (m′1, . . . ,m
′
`). Then h = h′+∆ if and only if 0 =

f+∆, where f is defined as above. This is a linear equation in r2`+2, r2`+4, . . . , r2`′ for

6.6. SECURITY PROOF 73

each choice of r2`+1, r2`+3, . . . , r2`′−1. The linear equation is nontrivial except when
r2`+1 = −m′2`+1, r2`+3 = −m′2`+3, and so on through r2`′−1 = −m′2`′−1. The linear
equation thus has at most #K`′−`−1 solutions (r2`+2, r2`+4, . . . , r2`′) for #K`′−` − 1
choices of (r2`+1, r2`+3, . . . , r2`′−1), plus at most #K`′−` solutions (r2`+2, r2`+4, . . . ,
r2`′) for 1 exceptional choice of (r2`+1, r2`+3, . . . , r2`′−1), for a total of #K2`′−2`−1 −
#K`′−`−1 + #K`′−` < #K2`′−2`(1/#K + 1/#K`′−`) solutions. Consequently p <
1/#K + 1/#K`′−` as claimed.

Case 4: `′ < `. Exchanging `,m with `′,m′ produces Case 2 or Case 3.

Part III

Elliptic-Curve Cryptography

75

7
The simplest protocol for

oblivious transfer

Oblivious Transfer (OT) is a cryptographic primitive defined as follows: in its simplest
flavour, 1-out-of-2 OT, a sender has two input messagesM0 andM1 and a receiver has
a choice bit c. At the end of the protocol the receiver is supposed to learn the message
Mc and nothing else, while the sender is supposed to learn nothing. Perhaps surpris-
ingly, this extremely simple primitive is sufficient to implement any cryptographic
task [Kil88]. OT can also be used to implement most advanced cryptographic tasks,
such as secure two- and multi-party computation (e.g., the millionaire’s problem) in
an efficient way [NNO+12; BLN+15].

Given the importance of OT, and the fact that most OT applications require a
very large number of OTs, it is crucial to construct OT protocols which are at the
same time efficient and secure against realistic adversaries.

A novel OT protocol. In this chapter we present a novel and extremely simple,
efficient and secure OT protocol. The protocol is a simple tweak of the celebrated
Diffie-Hellman (DH) key exchange protocol. Given a group G and a generator g, the
DH protocol allows two players Alice and Bob to agree on a key as follows: Alice
samples a random a, computes A = ga and sends A to Bob. Symmetrically Bob
samples a random b, computes B = gb and sends B to Alice. Now both parties can
compute gab = Ab = Ba from which they can derive a key k. The key observation is
now that Alice can also derive a different key from the value (B/A)a = gab−a

2

, and
that Bob cannot compute this group element (assuming that the computational DH
problem is hard).

We can now turn this into an OT protocol by letting Alice play the role of the
sender and Bob the role of the receiver (with choice bit c) as shown in Figure 7.1. The

77

78 CHAPTER 7. THE SIMPLEST OT PROTOCOL

Diffie-Hellman Key Exchange

Alice Bob

a← Zp b← Zp

A = ga -

� B = gb

k = H(Ba) k = H(Ab)
e← Ek(m)

-

Our OT Protocol

Sender Receiver
m0,m1 c

a← Zp b← Zp

A = ga -
if c = 0: B = gb

if c = 1: B = Ag−b

� B

k0 = H ((B)a) kc = H(Ab)
k1 = H

((
A
B

)a)
e0 ← Ek0(m0)
e1 ← Ek1(m1)

-

Figure 7.1: Our protocol in a nutshell

first message (from Alice to Bob) is left unchanged (and can be reused over multiple
instances of the protocol) but now Bob computes B as a function of his choice bit
c: if c = 0 Bob computes B = gb and if c = 1 Bob computes B = Agb. At this
point Alice derives two keys k0, k1 from (B)a and (B/A)a respectively. It is easy to
check that Bob can derive the key kc corresponding to his choice bit from Ab, but
cannot compute the other one. This can be seen as a random OT i.e., an OT where
the sender has no input but instead receives two random messages from the protocol,
which can be used later to encrypt his inputs.

We show that combining the above random OT protocol with the right symmetric
encryption scheme (e.g., a robust encryption scheme [ABN10; FLP+13]) achieves
security in a strong, simulation based sense and in particular we prove UC-security
against active and adaptive corruptions in the random oracle model.

A secure and efficient implementation. We report on an efficient and secure
implementation of the 1-out-of-2 random OT protocol: Our choice for the group is
a twisted Edwards curve that has been used by Bernstein, Duif, Lange, Schwabe

79

and Yang for building the Ed25519 signature scheme [BDL+11]. The security of the
curve comes from the fact that it is birationally equivalent to Bernstein’s Montgomery
curve Curve25519 [Ber06] where ECDLP is believed to be hard: Bernstein and Lange’s
SafeCurves website [BL15] reports cost of 2125.8 for solving ECDLP on Curve25519
using the rho method. The speed comes from the complete formulas for twisted
Edwards curves proposed by Hisil, Wong, Carter, and Dawson in [HWC+08].

We first modify the code in [BDL+11] and build a fast implementation for a single
OT. Later we build a vectorized implementation that runs OTs in batches. A com-
parison with the state of the art shows that our vectorized implementation is at least
an order of magnitude faster than previous work (we compare in particular with the
implementation reported by Asharov, Lindell, Schneider and Zohner in [ALS+13]) on
recent Intel microarchitectures. Furthermore, we take great care to make sure that our
implementation is secure against both passive attacks (our software is immune to tim-
ing attacks, since the implementation is constant-time) and active attacks (by design-
ing an appropriate encoding of group elements, which can be efficiently verified and
computed on). Our code can be downloaded from http://orlandi.dk/simpleOT.

Related works. OT owes its name to Rabin [Rab81] (a similar concept was in-
troduced earlier by Wiesner [Wie83] under the name of “conjugate coding”). There
are different flavours of OT, and in this chapter we focus on the most common and
useful flavour, namely

(
n
1

)
-OT, which was first introduced in [EGL85]. Many efficient

protocols for OT have been proposed over the years. Some of the protocols which are
most similar to ours are those of Bellare-Micali [BM89] and Naor-Pinkas[NP01]: those
protocols are (slightly) less efficient than ours and, most importantly, are not known
to achieve full simulation based security. More recent OT protocols such as [HL10;
DNO08; PVW08] focus on achieving a strong level of security in concurrent settings1
without relying on the random oracle model. Unfortunately this makes these pro-
tocols more cumbersome for practical applications: even the most efficient of these
protocols i.e., the protocol of Peikert, Vaikuntanathan, and Waters [PVW08] requires
11 exponentiations for a single

(
2
1

)
-OT and a common random string (which must be

generated by some trusted source of randomness at the beginning of the protocol). In
comparison our protocol uses fewer exponentiations (e.g., 5 for

(
2
1

)
-OT), generalizes to(

n
1

)
-OT and does not require any (hard to implement in practice) setup assumptions.

OT extension. While OT provably requires “public-key” type of assumptions [IR89]
(such as factoring, discrete log, etc.), OT can be “extended” [Bea96] in the sense that
it is enough to generate few “seed” OTs based on public-key cryptography which can
then be extended to any number of OTs using symmetric-key primitives only (PRG,
hash functions, etc.). This can be seen as the OT equivalent of hybrid encryption
(where one encrypts a large amount of data using symmetric-key cryptography, and
then encapsulates the symmetric-key using a public-key cryptosystem). OT exten-
sion can be performed very efficiently both against passive [IKN+03; ALS+13] and
active [Nie07; NNO+12; Lar14; ALS+15; KOS15] adversaries. Still, to bootstrap OT

1I.e., UC security [Can01], which is impossible to achieve without some kind of trusted setup
assumptions [CF01].

http://orlandi.dk/simpleOT

80 CHAPTER 7. THE SIMPLEST OT PROTOCOL

extension we need a secure and efficient OT protocol for the seed OTs (as much as we
need secure and efficient public-key encryption schemes to bootstrap hybrid encryp-
tion): The OT extension of [ALS+15] reports that it takes time (7 · 105 + 1.3m)µs to
perform m OTs, where the fixed term comes from running 190 base OTs. Using our
protocol as the base OT in [ALS+15] would reduce the initial cost to approximately
190 · 114 ≈ 2 · 104µs [Sch15], which leads to a significant overall improvement (e.g.,
a factor 10 for up to 4 · 104 OTs and a factor 2 for up to 5 · 105 OTs).

Organization. The rest of the paper is organized as follows: in Section 7.1 we
formally describe and analyse our protocol; Section 7.2 describes the chosen represen-
tation of group elements; Section 7.3 describes how field arithmetic is implemented;
and Section 7.4 reports the timings of our implementation.

7.1 The protocol
Notation. If S is a set s← S is a random element sampled from S. We work over
an additive group (G, B, p,+) of prime order p (with log(p) > κ) generated by B (the
base point), and we use the additive notation for the group since we later implement
our protocol using elliptic curves. Given the representation of some group element P
we assume it is possible to efficiently verify if P ∈ G. We use [n] as a shortcut for
{0, 1, . . . , n− 1}.

Building blocks. We use a hash-function H : (G × G) × G → {0, 1}κ as a key-
derivation function to extract a κ bit key from a group element, and the first two
inputs are used to seed the function.2 We model H as a random oracle when arguing
about the security of our protocol.

The ideal functionality. We want to implement m
(
n
1

)
-OT’s for `-bit messages

with κ-bit security between a sender S and a receiver R. We define a functionality
F−OT (n,m, `) as follows:

Honest Use: the functionality receives a vector of indices (c1, . . . , cm) ∈ [n]m from
the receiverR andm vectors of messages {(M i

0, . . . ,M
i
n−1)}i∈[m] from the sender

S where for all i, j : M j
i ∈ {0, 1}`. The functionality outputs a vector of `-bit

strings (z1, . . . , zn) to the receiver R, such that for all i ∈ [m], zi = M i
ci .

Dishonest Use: We weaken the functionality (hence the minus in the name) in the
following way: a corrupted receiverR∗ can input the choice values in an adaptive
fashion i.e., the ideal adversary can input the choice indices ci one by one and
learn the message zi before choosing the next index.

Note that when m = 1 the weakening has no effect. We choose to describe the
protocol for m OTs in parallel since we can do this more efficiently than simply
repeating m times the protocol for a single OT.

2Standard hash functions do not take group elements as inputs, and in later sections we will give
explicit encodings of group elements into bitstrings.

7.1. THE PROTOCOL 81

7.1.1 Random OT

We split the presentation in two parts: first, we describe and analyze a protocol for
random OT where the sender outputs n random keys and the receiver only learns
one of them; then, we describe how to combine this protocol with an appropriate
encryption scheme to complete the OT. We are now ready to describe our novel
random OT protocol:

Setup: (only once, independent of m):

1. S samples y ← Zp and computes S = yB and T = yS;

2. S sends S to R, who aborts if S 6∈ G;

Choose: (in parallel for all i ∈ [m])

1. R (with input ci ∈ [n]) samples xi ← Zp and computes

Ri = ciS + xiB

2. R sends Ri to S, who aborts if Ri 6∈ G;

Key Derivation: (in parallel for all i ∈ [m])

1. For all j ∈ [n], S computes

kij = H(S,Ri)(yR
i − jT)

2. R computes
kiR = H(S,Ri)(x

iS)

Basic properties. The key kij is computed by hashing xiyB+(ci−j)T and therefore
at the end of the protocol kiR = kici if both parties are honest. It is also easy to see
that:

Lemma 1. No (computationally unbounded) S∗ on input Ri can guess ci with prob-
ability greater than 1/n.

Lemma 2. No (computationally bounded) R∗ can output any two keys kij0 and kij1
with j0 6= j1 ∈ [n] if the computational Diffie-Hellman problem is hard in G.

7.1.2 How to use the protocol and UC Security

We now show how to combine our random OT protocol with an appropriate encryption
scheme to achieve UC security.

82 CHAPTER 7. THE SIMPLEST OT PROTOCOL

Motivation. Lemma 1 and 2 only state that some form of “privacy” holds for both
the sender and the receiver. However, since OT is mostly used as a building block into
more complex protocols, it is important to understand to which extent our protocol
offers security when composed arbitrarily with itself or other protocols: Simulation
based security is the minimal requirement which enables us to argue that a given
protocol is secure when composed with other protocols. Without simulation based
security, it is not even possible to argue that a protocol is secure if it is executed twice
in a sequential way! (See e.g., [DNO08] for a concrete counterexample for OT). The
UC theorem [Can01] allows us to say that if a protocol satisfies the UC definition of
security, then that protocol will be secure even when arbitrarily composed with other
protocols. Among other things, to show that a protocol is UC secure one needs to
show that a simulator can extract the input of a corrupted party: intuitively, this is
a guarantee that the party knows its input, and its not reusing/modifying messages
received in other protocols (aka malleability attack).

From random OT to standard OT. We start by adding a transfer phase to the
protocol, where the sender sends the encryption of his messages to the receiver:

Transfer: (in parallel for all i ∈ [m])

1. For all j ∈ [n], S computes eij ← E(kij ,M
i
j)

2. S sends (ei0, . . . , e
i
n−1) to R;

Retrieve: (in parallel for all i ∈ [m])

1. R computes and outputs zi = D(ki, eici).

The encryption scheme. The protocol uses a symmetric encryption scheme (E,D).
We call K,M, C the key space, message space and ciphertext space respectively and
κ the security parameter. We allow the decryption algorithm to output a special
symbol ⊥ to indicate an invalid ciphertext. We need the encryption scheme to satisfy
the following properties:

Definition 1. We say a symmetric encryption scheme (E,D) is non-committing if
there exist PPT algorithms S1,S2 such that ∀M ∈ M (e′, k′) and (e, k) are com-
putationally indistinguishable where e′ ← S1(1κ), k′ ← S2(e′,M), k ← K and
e← E(k,M) (S1,S2 are allowed to share a state).

The definition says that it is possible for a simulator to come up with a ciphertext
e which can later be “explained” as an encryption of any message, in such a way that
the joint distribution of the ciphertext and the key in this simulated experiment is
indistinguishable from the normal use of the encryption scheme, where a key is first
sampled and then an encryption of M is generated.

Definition 2. Let S be a set of random keys from K and VS,e ⊆ S the subset of valid
keys for a given ciphertext e i.e., the keys in S such that D(k, e) 6= ⊥.

We say (E,D) satisfies robustness if for all ciphertexts e← A(1κ, S) adversarially
generated by a PPT A, |VS,e| ≤ 1 except with negligible probability.

7.1. THE PROTOCOL 83

The definition says that it should be hard for an adversary to generate a ciphertext
which can be decrypted to more than one valid ciphertext using any polynomial
number of randomly generated keys (even for adversaries who see those keys before
generating the ciphertext).

A concrete example. We give a concrete example of a very simple scheme which
satisfies Definitions 1 and 2: letM = {0, 1}` and K = C = {0, 1}`+κ. The encryption
algorithm E(k,m) parses k as (α, β) and e = (m ⊕ α, β). The decryption algorithm
D(k, e) parses k = (α, β) and e = (e1, e2) and outputs ⊥ if e2 6= β or outputs
m = e1 ⊕ α otherwise. It can be shown that:

Lemma 3. The scheme (E,D) defined above satisfies Definitions 1 and 2.

7.1.3 Simulation based security (UC)
We can finally argue UC security of our protocol.3 The main ideas behind the proof
are: it is possible to extract the choice value by checking whether a corrupted receiver
queries the random oracle on points of the form yRi − cT for some c, since no ad-
versary can query on points of this form for more than one c (without breaking the
CDH assumption) and the non-committing property of (E,D) allows us to complete
a successful simulation even if the corrupted receiver queries the oracle after he re-
ceives the ciphertexts; it is also possible to extract the sender messages by decrypting
the ciphertexts with every key which the receiver got from the random oracle and
Definition 2 allows us to conclude that except with negligible probability D returns
⊥ for all keys different from the correct one.

Theorem 1. The above protocol securely implements the functionality
F−OT (n,m, `) under the following conditions:

Corruption Model: any active, adaptive corruption;

Hybrid Functionalities: we model H as a random oracle and we assume an au-
thenticated channel (but not confidential) between the parties;

Computational Assumptions: we assume that the symmetric encryption
scheme (E,D) satisfies Definition 1 and 2 and the computational Diffie-Hellman
problem is hard in G.

Non-malleability in practice. Clearly, a proof that a → b only says that b is
true when a is true, and since cryptographic security models (a) are not always a
good approximation of the real world, we discuss some of these discrepancies here
and therefore to which extent our protocol achieves security in practice (b), with
particular focus on malleability attacks.

When instantiating our protocol we must replace the random oracle with a hash
function: UC proofs crucially rely on the fact that the oracle is local to the protocol

3This subsection assumes that the reader is familiar with standard security definitions and proofs
for two-party computation protocols such as those presented in [HL10].

84 CHAPTER 7. THE SIMPLEST OT PROTOCOL

i.e., it can be only queried by the protocol participants, and different instances of
the protocol run with different random oracles: clearly, there is no such thing in
the real world. To approximate the model, one can “localize” the random oracle
by prepending the parties id’s and the session id to the hash function. We argue
here that our choice of using the transcript of the protocol (S,Ri) as salt for the
hash function helps in making sure that the oracle is local to the protocol, and helps
against malleability attacks in cases where the party and session id’s are unavailable.
Consider the following man-in-the middle attack, where an adversary A plays two
copies of the

(
n
1

)
-OT, one as the sender with R and one as the receiver with S. Here

is how the attack works: 1) A receives S from S and forwards it to R; 2) Then the
adversary receives R from R and sends R′ = S + R to S; 3) Finally A receives the
{ei}i∈[n] from S and sets e′i = e(i−1 mod n) to R. It is easy to see that if the same hash
function is used to instantiate the random oracle in the two protocols (and if c 6= 0),
then the honest receiver outputs z = Mc+1, which is clearly a breach of security (i.e.,
this attack could not be run if the protocols are replaced with OT functionalities).

The previous can be seen as a malleability attack on the choice bit. An ad-
versary can also try a malleability attack on the sender messages by forwarding
(S′, R′) = (S,R) but then manipulating the ei’s into ciphertexts e′i which decrypt
to related messages. In the

(
2
1

)
-OT, these attacks can be mitigated by using authen-

ticated encryption for (E,D) (which also satisfies robustness as in Definition 2). Now
an adversary who changes both ciphertexts is equivalent to an ideal adversary using
input (⊥,⊥), while an adversary who only changes one ciphertext, say ec, is equiva-
lent to an adversary which uses input bit 1 − c on the left and inputs (m1−c,⊥) on
the right. Unfortunately for

(
n
1

)
-OT (with n > 2) this does not work. For instance,

an adversary who corrupts only 1 out of m ciphertext cannot be simulated having
access to ideal functionalities.

Finally we note that no practical instantiation of the encryption scheme leads to
a non-committing encryption scheme (as required in Definition 1), but we conjecture
that this is an artificial requirement and does not lead to any concrete vulnerabilities.

7.2 The random OT protocol in practice

This section describes how the random OT protocol can be realized in practice. In
particular, this section focuses on describing how group elements are represented as
bitstrings, i.e., the encodings. In the abstract description of the random OT protocol,
the sender and the receiver transmit and compute on “group elements”, but clearly any
implementation of the protocol transmits and computes on bitstrings. We describe
how the encodings are designed to achieve efficiency (both for communication and
computation) and security (particularly against a malicious party who might try to
send malformed encodings).

The group. The group G we choose for the protocol is a subset of Ḡ; Ḡ is defined
by the set of points on the twisted Edwards curve

{(x, y) ∈ F2255−19 × F2255−19 : −x2 + y2 = 1 + dx2y2}

7.2. THE RANDOM OT PROTOCOL IN PRACTICE 85

and the twisted Edwards addition law

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 + x1x2

1− dx1x2y1y2

)
introduced by Bernstein, Birkner, Joye, Lange, and Peters in [BBJ+08]. The constant
d is −121665/121666. The generator B is the unique point (xB , 4/5) with xB being
“positive”; see [BDL+11]. The two groups Ḡ and G are isomorphic respectively to
Zp × Z8 and Zp with

p = 2252 + 27742317777372353535851937790883648493.

Encoding of group element. An encoding E for a group G0 is a way of represent-
ing group elements as fixed-length bitstrings. We write E(P) for a bitstring which
represents P ∈ G0. Note that there can be multiple bitstrings that represent P ; if
there is only one bitstring for each group element, E is said to be deterministic (E
is said to be non-deterministic otherwise4). Also note that some bitstrings (of the
fixed length) might not represent any group element; we write E(G1) for the set of
bitstrings which represent some element in G1 ⊆ G0. E is said to be verifiable if there
exists an efficient algorithm that, given a bitstring as input, outputs whether it is in
E(G0) or not.

The encoding EX for group operations. The non-deterministic encoding EX for
Ḡ, which is based on the extended coordinates in [HWC+08], represents each point
using the tuple (X : Y : Z : T) with XY = ZT , representing x = X/Z and y = Y/Z.
We use EX whenever we need to perform group operations since given EX(P), EX(Q)
where P,Q ∈ Ḡ, it is efficient to compute EX(P +P), EX(P +Q), and EX(P −Q). In
particular, given an integer scalar r ∈ Zp it is efficient to compute EX(rB), and given
r and EX(P) it is efficient to compute EX(rP).

The encoding E0 and related encodings. The deterministic encoding E0 for Ḡ
represents each group element as a 256-bit bitstring: the natural 255-bit encoding
of y followed by a sign bit which depends only on x. The way to recover the full
value x is described in [BDL+11, Section 5], and group membership can be verified
efficiently by checking whether x2(y2 − 1) = dy2 + 1 holds; therefore E0 is verifiable.
See [BDL+11] for more details of E0.

For the following discussions, we define deterministic encodings E1 and E2 for G
as

E1(P) = E0(8P), E2(P) = E0(64P), P ∈ G.

We also define non-deterministic encodings E(0) and E(1) for G as

E(0)(P) = E0(P + t), E(1)(P) = E0(8P + t′), P ∈ G,

where t, t′ can be any 8-torsion point. Note that each element in G has exactly 8
representations under E(0) and E(1).

4We stress that non-deterministic in this context does not mean that the encoding involves any
randomness.

86 CHAPTER 7. THE SIMPLEST OT PROTOCOL

Point compression/decompression. It is efficient to convert from EX(P) to
E0(P) and back; since E0 represents points as much shorter bitstrings, these oper-
ations are called point compression and point decompression, respectively. Roughly
speaking, point compression outputs y = Y/Z along with the sign bit of x = X/Z, and
point decompression first recovers x and then outputs X = x, Y = y, Z = 1, T = xy.
We automatically check for group membership during point decompression.

We use E0 for data transmission: the parties send bitstrings in E0(Ḡ) and expect
to receive bitstrings in E0(Ḡ). This means a computed point encoded by EX has
to be compressed before it is sent, and a received bitstring has to be decompressed
for subsequent group operations. Sending compressed points helps to reduce the
communication complexity: the parties only need to transfer 32 + 32m bytes in total.

Secure data transmission. At the beginning of the protocol S computes and sends
E0(S). In the ideal case, R should receive a bitstring in E0(G) which he interprets
as E0(S). However, an attacker (a corrupted S∗ or a man-in-the-middle) can send R
1) a bitstring that is not in E0(Ḡ) or 2) a bitstring in E0(Ḡ \ G). In the first case,
R detects that the received bitstring is not valid during point decompression and
ignores it. In the second case, R can check group membership by computing the pth
multiple of the point, but a more efficient way is to use a new encoding E ′ such that
each bitstrings in E0(Ḡ) represents a point in G under E ′. Therefore R considers the
received bitstring as E(0)(S) = E0(S + t), where t can be any 8-torsion point.

The encoding E(0) (along with point decompression) makes sure that R receives
bitstrings representing elements in G. However, an attacker can derive ci by exploiting
the extra information given by a nonzero t: a naive R would compute and send
E0(ci(S + t) + xiB) = E0(cit + Ri); now by testing whether the result is E0(G) the
attacker learns whether ci = 0.

To get rid of the 8-torsion point, R can multiply the received point by 8 ·(8−1 mod
p), but a more efficient way is to just multiply by 8 and then operate on EX(8S) and
EX(8xiB) to obtain and send E1(Ri) = E0(8Ri), i.e, the encoding switches to E1 for
Ri. After this S works similarly as R: to ensure that the received bitstring represents
an element in G, S interprets the bitstring as E(1)(Ri) = E0(8Ri + t); to get rid of
the 8-torsion point S also multiplies the received point by 8, and then S operates on
EX(64Ri) and EX(64T) to obtain EX(64(yRi − jT)).

Key derivation. The protocol computes HS,Ri(P) where P can be xiS, yRi, or
yRi − jT for j ∈ [n]. This is implemented by hashing E1(S) ‖ E2(Ri) ‖ E2(P) with
SHA3-256 [BDP+13]. The choice of encodings is natural: S computes EX(S), and R
computes EX(8S); since multiplication by 8 is much cheaper than multiplication by
(8−1 mod p), we use E1(S) = E0(8S) for hashing. For similar reasons we use E2 for
Ri and P .

Actual operations. For completeness, we present in Table 7.1 a full overview of
operations performed during the protocol for the case of 1 out of 2 OT (i.e., n = 2).

7.3. FIELD ARITHMETIC 87

S
Output Input Operations
S y y ·B

E(0)(S) S C(S)
8S S 8 · S
E1(S) 8S C(8S)
64T 8y, 8S 8 · (y · 8S)

64Ri E(1)(Ri) 8 · D(E(1)(Ri)
E2(Ri) 64Ri C(64Ri)
64yRi y, 64Ri y · 64Ri

E2(yRi) 64yRi C(64yRi)
64(yRi − T) 64T, 64yRi 64yRi − 64T
E2(yRi − T) 64(yRi − T) C(64(yRi − T))

R
Output Input Operations

8S E(0)(S) 8 ·D(E(0)(S))
E1(S) 8S C(8S)

8xiB 8xi 8xi ·B
8xiB+8S 8S, 8xiB 8xiB + 8S

E(1)(Ri) 8Ri C(8Ri)
E2(Ri) 8Ri C(8 · 8Ri)
64xiS 8xi, 8S 8xi · 8S
E2(xiS) 64xiS C(64xiS)

Table 7.1: How the parties compute encodings of group elements: each row shows
that the “Output” is computed given “Input” using the operations “Operations”.
The input might come from the output of a previous row, a received string (e.g.,
E(1)(Ri)), or a random scalar that the party generates (e.g., 8xi). The upper
half of the table are the operations that do not depend on i, which means the
operations are performed only once for the whole protocol. EX is suppressed:
group elements written without encoding are actually encoded by EX . C and D
stand for point compression and point decompression respectively. Computation
of the rth multiple of P is denoted as “rP ”. In particular, 8P can be carried out
with only 3 point doublings.

7.3 Field arithmetic

This section describes our implementation strategy for arithmetic operations in the
field F2255−19, which serve as low-level building blocks for operations on the curve.
Field operations are decomposed into double-precision floating-point operations using
our strategy. A straightforward way for implementation is then using double-precision
floating-point instructions. However, a better way to utilize the 64 × 64 → 128-bit
serial multiplier is to decompose field operations into integer instructions as [BDL+11]
does. The real reason we decide to use floating-point operations is that it allows us to
use 256-bit vector instructions on the target microarchitectures, which are functionally
equivalent to 4 double-precision floating-point instructions. The technique, which
is called vectorization, makes our vectorized implementation achieve much higher
throughtput than our non-vectorized implementation based on [BDL+11].

Representation of field elements. Each field element x ∈ F2255−19 is represented
as 12 limbs (x0, x1, . . . , x11) such that x =

∑
xi and xi/2d21.25ie ∈ Z. Each xi is stored

as a double-precision floating-point number. Field operations are then carried out by
limb operations such as floating-point additions and multiplications.

When a field element gets initialized (e.g., when obtained from a table lookup),
each xi uses no more than 21 bits of the 53-bit mantissa. However, after a series of
limb operations, the number of bits xi takes can grow. It is thus necessary to reduce
the number of bits (in the mantissa) with carries before any precision is lost; see below

88 CHAPTER 7. THE SIMPLEST OT PROTOCOL

instruction latency throughput description
vandpd 1 1 bitwise and
vorpd 1 1 bitwise or
vxorpd 1 1 (4) bitwise xor
vaddpd 3 1 4-way parallel double-precision floating-point additions
vsubpd 3 1 4-way parallel double-precision floating-point subtractions
vmulpd 5 1 4-way parallel double-precision floating-point multiplications

Table 7.2: 256-bit vector instructions used in our implementation. Note that
vxorpd has throughput of 4 when it has only one source operand.

for more discussions.

Field arithmetic. Additions and subtractions of field elements are implemented
in a straightforward way: simply adding/subtracting the corresponding limbs. This
does increase the number of bits in the mantissa, but in our application it suffices to
reduce bits only at the end of the multiplication function.

A field multiplication is divided into two steps. The first step is a schoolbook
multiplication on the 2 · 12 input limbs, with reduction modulo 2255− 19 to bring the
result back to 12 limbs. The schoolbook multiplication takes 132 floating-point addi-
tions, 144 floating-point multiplications, and a few more multiplications by constants
to handle the reduction.

Let (c0, c1, . . . , c11) be the result after schoolbook multiplication. The second step
is to perform carries to reduce the number of bits in ci. Carry from ci to ci+1 (indices
work modulo 12), which we denote as ci → ci+1, is performed with 4 floating-point
operations: c ← ci + αi; c ← c− αi; ci ← ci − c; ci+1 ← ci+1 + c. The idea is to use
αi = 3 · 2ki where ki is big enough so that the less significant part of ci is discarded
in ci + αi, forcing c to contain only the more significant part of ci. For i = 11, one
extra multiplication is required to scale c by 19 · 2−255 before it is added to c0.

A straightforward way to reduce number of bits in all limbs is to use the carry
chain c0 → c1 → c2 → · · · → c11 → c0 → c1. The problem with the straightforward
carry chain is that there is not enough instruction level parallelism to hide the 3-cycle
latencies (see discussion below). To hide the latencies we thus interleave the following
3 carry chains:

c0 → c1 → c2 → c3 → c4 → c5,

c4 → c5 → c6 → c7 → c8 → c9,

c8 → c9 → c10 → c11 → c0 → c1.

In total the multiplication function takes 192 floating-point additions/subtractions
and 156 floating-point multiplications.

When the input operands are the same, many limb products will repeat in the
schoolbook multiplication; a field squaring is therefore cheaper than a field multipli-
cation. In total the squaring function takes 126 floating-point additions/subtractions
and 101 floating-point multiplications.

Field inversion is implemented as a fix sequence of field squarings and multiplica-
tions.

7.4. IMPLEMENTATION RESULTS 89

h6sandy h9ivy
[Moo15] Average cycles to compute a public key 61828 57612
[BDL+11] Average cycles to compute a shared secret 194036 182708
this work Average cycles to generate a public key 61458 60853

Average cycles to compute a shared secret 182169 180343

Table 7.3: DH speeds of our work and existing Curve25519 implementations.

m 4 8 16 32 64 128 256 512 1024
this work Running time of S 548 381 321 279 265 257 246 237 228

Running time of R 472 366 279 229 205 200 193 184 177
[ALS+13] Running time of S 17976 10235 6132 4358 3348 2877 2650 2528 2473

Running time of R 16968 9261 5188 3415 3382 2909 2656 2541 2462

Table 7.4: Timings for per OT in kilocycles. Multiplying the number of kilocycles
by 0.5 one can obtain the running time (in µs) on our test architecture.

Vectorization. We decompose field operations into 64-bit floating-point and logical
operations. The Intel Sandy Bridge and Ivy Bridge microarchitectures, as well as
many recent microarchitectures, offer instructions that operate on 256-bit registers.
Some of these instructions treat the registers as vectors of 4 double-precision floating-
point numbers and perform 4 floating-point operations in parallel; there are also
256-bit logical instructions that can be viewed as 4 64-bit logical instructions. We
thus use these instructions to run 4 scalar multiplications in parallel. Table 7.2 shows
the instructions we use, along with their latencies and throughputs on the Sandy
Bridge and Ivy Bridge given in Fog’s well-known survey [Fog16].

7.4 Implementation results
This section compares the speed of our implementation of

(
2
1

)
-OT (i.e., n = 2) with

other similar implementations. We stress that our software is a constant-time one:
timing attacks are avoided using the same high-level strategy as [BDL+11].

To show that our speeds for curve operations are competitive, we modify the soft-
ware to support the function of Diffie-Hellman key exchange and compare the results
with existing Curve25519 implementations (our implementation performs scalar mul-
tiplications on the twisted Edwards curve, so it is not the same as Curve25519). The
experiments are carried out on two machines on the eBACS site for publicly verifi-
able benchmarks [BL]: h6sandy (Sandy Bridge) and h9ivy (Ivy Bridge). Since our
protocol can serve as the base OTs for an OT extension protocol, we also compare
our speed with a base OT implementation presented in [ALS+13], which is included
in the Scapi multi-party computation library; the experiments are made on an Intel
Core i7-3537U processor (Ivy Bridge) where each party runs on one core. Note that
all experiments are performed with Turbo Boost disabled.

Comparing with Curve25519 implementations. Table 7.3 compares our work
with existing Curve25519 implementations. “Cycles to generate a public key” indicates
the time to generate the public key given a secret key; the Curve25519 implementation
is the implementation by Andrew Moon [Moo15]. “Cycles to compute a shared secret”
indicates the time to generate the shared secret, given a secret key and a public key;

90 CHAPTER 7. THE SIMPLEST OT PROTOCOL

the Curve25519 implementation is from [BDL+11]. Note that since our software runs
4 scalar multiplications in parallel, the numbers in the table are the time for generating
4 public keys or 4 shared secrets divided by 4. In other words, our implementation is
optimized for throughput instead of latency.

Comparing with Scapi. Table 7.4 shows the timings of our implementation for the
random OT protocol, along with the timings of a base-OT implementation presented
in [ALS+13]. The paper presents several base-OT implementations; the one we com-
pare with is Miracl-based with “long-term security” using random oracle (cf. [ALS+13,
Section 6.1]). The implementation uses the NIST K-283 curve and SHA-1 for hashing,
and it is not a constant-time implementation. It turns out that our work is an order
of magnitude faster for m ∈ {4, 8, . . . , 1024}.

Memory consumption. Our code for public-key generation uses a 284-KB table.
For shared-secret computation the table size is 12 KB. For OTs, S uses a 12-KB
table, while R is allowed to use a table of size up to 1344 KB which depends on the
parameters given. The current code provides 4 copies of the precomputed points, one
for each of the 4 scalar multiplcations, so it is possible to reduce the table sizes by
a factor of 4 by broadcasting the precomputed points. Another reason that we have
large tables is because of the representation for field elements: each limbs takes 8
bytes, so each field element already takes 12 · 8 = 96 bytes. The window sizes we use
are the same as [BDL+11]. See [BDL+11] for issues related to table sizes.

8
Sandy2x: new Curve25519 speed

records

In 2006, Bernstein proposed Curve25519, which uses a fast Montgomery curve for
Diffie-Hellman (DH) key exchange. In 2011, Bernstein, Duif, Schwabe, Lange and
Yang proposed the Ed25519 digital signature scheme, which uses a fast twisted Ed-
wards curve that is birationally equivalent to the same Montgomery curve. Both
schemes feature a conservative 128-bit security level, very small key sizes, and consis-
tently fast speeds on various CPUs (cf. [BDL+11], [BL]), as well as microprocessors
such as ARM ([BS12], [DHH+15]), Cell ([CS09]), etc.

Curve25519 and Ed25519 have gained public acceptance and are used in many
applications. The IANIX site [Bro] has lists for Curve25519 and Ed25519 deployment,
which include the Tor anonymity network, the QUIC transport layer network protocol
developed by Google, OpenSSH, and many more.

This chapter presents Sandy2x, a new software which sets new speed records for
Curve25519 and Ed25519 on the Intel Sandy Bridge and Ivy Bridge microarchitec-
tures. Previous software sets speed records for these CPUs using the serial multiplier.
Sandy2x, instead, uses of a vectorized multiplier. Our results show that previous
elliptic-curve cryptography (ECC) papers using the serial multiplier might have made
a suboptimal choice.

A part of our software (the code for Curve25519 shared-secret computation) has
been submitted to the SUPERCOP benchmarking toolkit, but the speeds have not
been included in the eBACS [BL] site yet.

Serial multipliers versus vectorized multipliers. Prime field elements are usu-
ally represented as big integers in software. The integers are usually divided into
several small chunks called limbs, so that field operations can be carried out as se-

91

92 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

quences of operations on limbs. Algorithms involving field arithmetic are usually
bottlenecked by multiplications, which are composed of limb multiplications. On
Intel CPUs, each core has a powerful 64 × 64 → 128-bit serial multiplier, which is
convenient for limb multiplications. There have been many ECC papers that use the
serial multiplier for field arithmetic. For example, [BDL+11] uses the serial multipliers
on Nehalem/Westmere; [LS12c] uses the serial multipliers on Sandy Bridge; [CHS14]
uses the serial multipliers on Ivy Bridge.

On some other chips, it is better to use a vectorized multiplier. The Cell Broad-
band Engine has 7 Synergistic Processor Units (SPUs) which are specialized for vec-
torized instructions; the primary processor has no chance to compete with them.
ARM has a 2-way vectorized 32 × 32 → 64-bit multiplier, which is clearly stronger
than the 32 × 32 → 64 serial multiplier. A few ECC papers exploit the vectorized
multipliers, including [BS12] for ARM and [CS09] for Cell. In 2014, there is finally
one effort for using a vectorized multiplier on Intel chips, namely [BCL+14]. The pa-
per uses vectorized multipliers to carry out hyperelliptic-curve cryptography (HECC)
formulas that provide a natural 4-way parallelism. ECC formulas do not exhibit such
nice internal parallelism, so vectorization is expected to induce much more overhead
than HECC.

Our speed records rely on using a 2-way vectorized multipliers on Sandy Bridge
and Ivy Bridge. The vectorized multiplier carries out only a pair of 32× 32→ 64-bit
multiplication in one instruction, which does not seem to have any chance to compete
with the 64 × 64 → 128-bit serial multiplier, which is used to set speed records in
previous Curve25519/Ed25519 implementations. In this chapter we investigate how
serial multipliers and vectorized multipliers work (Section 8.1), and give arguments
on why the vectorized multiplier can compete.

Our work is similar to [BCL+14] in the sense that we both use vectorized multi-
pliers on recent Intel microarchitectures. The difference is that our algorithm does
not have very nice internal parallelism, especially for verification. Our work is also
similar to [BS12] in the sense that the vectorized multipliers have the same input and
output size. We stress that the low-level optimization required on ARM is different to
Sandy/Ivy Bridge, and it is certainly harder to beat the serial multiplier on Sandy/Ivy
Bridge.

Performance results. The performance results for our software are summarized
in Table 8.1, along with the results for [BDL+11] and [LM13]. [BDL+11] is chosen
because it holds the speed records on the eBACS site for publicly verifiable bench-
marks [BL]; [LM13] is chosen because it is the fastest constant-time public imple-
mentation for Ed25519 (and Curve25519 public-key generation) to our knowledge.
The speeds of our software (as [BDL+11] and [LM13]) are fully protected against
simple timing attacks, cache-timing attacks, branch-prediction attacks, etc.: all load
addresses, all store addresses, and all branch conditions are public.

For comparison, Longa reported ≈ 298 000 Sandy Bridge cycles for the
“ECDHE” operation, which is essentially 1 public-key generation plus 1 secret-key
computation, using Microsoft’s 256-bit NUMS curve [BBC+14]. OpenSSL 1.0.2, after
heavy optimization work from Intel, computes a NIST P-256 scalar multiplication in
311 434 Sandy Bridge cycles or 277 994 Ivy Bridge cycles.

93

SB cycles IB cycles table size reference implementation
Curve25519 public-key generation 54 346 52 169 30720 + 0 (new) sandy2x

61 828 57 612 24576 + 0 [LM13]
194 165 182 876 0 + 0 [BDL+11] CHES 2011 amd64-51

Curve25519 shared secret computation 159 128 156 995 0 + 0 (new) sandy2x
194 036 182 708 0 + 0 [BDL+11] CHES 2011 amd64-51

Ed25519 public-key generation 57 164 54 901 30720 + 0 (new) sandy2x
63 712 59 332 24576 + 0 [LM13]
64 015 61 099 30720 + 0 [BDL+11] CHES 2011 amd64-51-30k

Ed25519 sign 63 526 59 949 30720 + 0 (new) sandy2x
67 692 62 624 24576 + 0 [LM13]
72 444 67 284 30720 + 0 [BDL+11] CHES 2011 amd64-51-30k

Ed25519 verification 205 741 198 406 10240 + 1920 (new) sandy2x
227 628 204 376 5120 + 960 [LM13]
222 564 209 060 5120 + 960 [BDL+11] CHES 2011 amd64-51-30k

Table 8.1: Performance results for Curve25519 and Ed25519 of sandy2x, the
CHES 2011 paper [BDL+11], and the implementation by Andrew Moon “floody-
berry” [LM13]. All implementations are benchmarked on the Sandy Bridge ma-
chine “h6sandy” and the Ivy Bridge machine “h9ivy” (abbreviated as SB and IB
in the table), of which the details can be found on the eBACS website [BL]. Each
cycle count listed is the measurement result of running the software on one CPU
core, with Turbo Boost disabled. The table sizes (in bytes) are given in two parts:
read-only memory size + writable memory size.

For Curve25519 public-key generation, [LM13] and our implementation gain much
better results than [BDL+11] by performing the fixed-base scalar multiplications on
the twisted Edwards curve used in Ed25519 instead of the Montgomery curve; see
Section 8.2.2. Our implementation strategy for Ed25519 public-key generation and
signing is the same as Curve25519 public-key generation. Also see Section 8.2.1 for
Curve25519 shared-secret computation, and Section 8.3 for Ed25519 verification.

We also include the tables sizes of [BDL+11], [LM13] and Sandy2x in Table 8.1.
Note that our current code uses the same window sizes as [BDL+11] and [LM13] but
larger tables for Ed25519 verification. This is because we use a data format that is
not compact but more convenient for vectorization. Also note that [BDL+11] has two
implementations for Ed25519: amd64-51-30k and amd64-64-24k. The tables sizes for
amd64-64-24k are 20% smaller than those of amd64-51-30k, but the speed records
on eBACS are set by amd64-51-30k.

Other fast Diffie-Hellman and signature schemes. On the eBACS site [BL]
there are a few DH schemes that achieve fewer Sandy/Ivy Bridge cycles for shared-
secret computation than our software:
gls254prot from [OLA+13] uses a GLS curve over a binary field; gls254 is a non-
constant-time version of gls254prot; kummer from [BCL+14] is a HECC scheme;
kumfp127g from [BCH+13] implements the same scheme as [BCL+14] but uses an
obsolete approach to perform scalar multiplication on hyperelliptic curves as explained
in [BCL+14].

The GLV patents may cover the use of endomorphisms to speed up ECC on GLS
curves, and papers such as [PQ12] and [Sem15] make binary-field ECC less confidence-
inspiring. There are algorithms that are better than the Rho method for high-genus

94 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

curves; see, for example, [Thé03]. Compared to these schemes, Curve25519, using an
elliptic curve over a prime field, seems to be a more conservative (and patent-free)
choice for deployment.

The eBACS website also lists some signature schemes which achieve better signing
and/or verification speeds than our work. Compared to these schemes, Ed25519
has the smallest public-key size (32 bytes), fast signing speed (superseded only by
multivariate schemes with much larger key sizes), reasonably fast verification speed
(can be much better if batched verification is considered, as shown in [BDL+11]), and
a high security level (128-bit).

8.1 Arithmetic in F2255−19

A radix-2r representation represents an element f in a b-bit prime field as (f0, f1,
. . . , fdb/re−1), such that

f =

db/re−1∑
i=0

fi2
dire.

This is called a radix-2r representation. Field arithmetic can then be carried out
using operations on limbs; as a trivial example, a field addition can be carried out by
adding corresponding limbs of the operands.

Since the choice of radix is often platform-dependent, several radices have been
used in existing software implementations of Curve25519 and Ed25519. This section
describes and compares the radix-251 representation (used by [BDL+11]) with the
radix-225.5 representation (used by [BS12] and this chapter), and explains how a small-
radix implementation can beat a large-radix one on Sandy Bridge and Ivy Bridge, even
though the vectorized multiplier seems to be slower. The radix-264 representation
by [BDL+11] appears to be slower than the radix-251 representation for Curve25519
shared-secret computation, so only the latter is discussed in this section.

8.1.1 The radix-251 representation

[BDL+11] represents an integer f modulo 2255 − 19 as

f0 + 251f1 + 2102f2 + 2153f3 + 2204f4

As the result, the product of f0 + 251f1 + 2102f2 + 2153f3 + 2204f4 and g0 + 251g1 +
2102g2 + 2153g3 + 2204g4 is h0 + 251h1 + 2102h2 + 2153h3 + 2204h4 modulo 2255 − 19
where

h0 = f0g0 + 19f1g4 + 19f2g3 + 19f3g2 + 19f4g1,

h1 = f0g1 + f1g0 + 19f2g4 + 19f3g3 + 19f4g2,

h2 = f0g2 + f1g1 + f2g0 + 19f3g4 + 19f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 19f4g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0.

One can replace g by f to derive similar equations for squaring.

8.1. ARITHMETIC IN F2255−19 95

The radix-251 representation is designed to fit the 64× 64→ 128-bit serial multi-
plier, which can be accessed using the mul instruction. The usage of the mul instruc-
tion is as follows: given a 64-bit integer (either in memory or a register) as operand,
the instruction computes the 128-bit product of the integer and rax, and stores the
higher 64 bits of in rdx and lower 64 bits in rax.

The field multiplication function begins with computing f0g0, f0g1, . . . , f0g4. For
each gj , f0 is first loaded into rax, and then a mul instruction is used to compute
the product; some mov instructions are required to move the rdx and rax to the
registers where hj is stored. Each monomial involving fi where i > 0 also takes a
mul instruction, and an addition (add) and an addition with carry (adc) are required
to accumulate the result into hk. Multiplications by 19 can be handled by the imul
instruction. In total, it takes 25 mul, 4 imul, 20 add, and 20 adc instructions to
compute h0, h1, . . . , h4 1. Note that some carries are required to bring the hk back
to around 51 bits. We denote such a radix-51 field multiplication including carries as
m; m− represents m without carries.

8.1.2 The radix-225.5 representation
[BS12] represents an integer f modulo 2255 − 19 as

f0 + 226f1 + 251f2 + 277f3 + 2102f4 + 2128f5 + 2153f6 + 2179f7 + 2204f8 + 2230f9.

As the result, the product of f0 + 226f1 + 251f2 + · · · and g0 + 226g1 + 251g2 + · · · is
h0 + 226h1 + 251h2 + · · · modulo 2255 − 19 as shown in Figure 8.1

One can replace g by the f to derive similar equations for squaring.
The representation is designed to fit the vector multiplier on Cortex-A8, which per-

forms a pair of 32× 32→ 64-bit multiplications in one instruction. On Sandy Bridge
and Ivy Bridge a similar vectorized multiplier can be accessed using the vpmuludq 2

instruction. The AT&T syntax of the vpmuludq instruction is as follows:

vpmuludq src2, src1, dest

where src1 and dest are 128-bit registers, and src2 can be either a 128-bit register
or (the address of) an aligned 32-byte memory block. The instruction multiplies the
lower 32 bits of the lower 64-bit words of src1 and src2, multiplies the lower 32 bits
of the higher 64-bit words ofsrc1 and src2, and stores the 64 bits products in 64-bit
words of dest.

To compute h = fg and h′ = f ′g′ at the same time, we follow the strategy of [BS12]
but replace the vectorized addition and multiplication instructions by corresponding
ones on Sandy/Ivy Bridge. Given (f0, f

′
0), . . . (f9, f

′
9) and (g0, g

′
0), . . . (g9, g

′
9), first

prepare 9 vectors (19g1, 19g′1), . . . , (19g9, 19g′9) with 10 vpmuludq instructions and
(2f1, 2f

′
1), (2f3, 2f

′
3), . . . , (2f9, 2f

′
9) with 5 vectorized addition instructions vpaddq.

Note that the reason to use vpaddq instead of vpmuludq is to balance the loads
1[BDL+11] uses one more imul; perhaps this is for reducing memory access.
2The starting ’v’ indicate that the instruction is the VEX extension of the pmuludq instruction.

The benefit of using vpmuludq is that it is a 3-operand instruction. In this chapter we show vector
instructions in their VEX extension form, even though vector instructions are sometimes used without
the VEX extension.

96 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

h0 = f0g0 + 38f1g9 + 19f2g8 + 38f3g7 + 19f4 g6 + 38f5g5 + 19f6g4 + 38f7g3
+ 19f8g2 + 38f9g1,

h1 = f0g1 + f1g0 + 19f2g9 + 19f3g8 + 19f4g7 + 19f5g6 + 19f6g5 + 19f7g4
+ 19f8g3 + 19f9g2,

h2 = f0g2 + 2f1g1 + f2g0 + 38f3g9 + 19f4g8 + 38f5g7 + 19f6g6 + 38f7g5
+ 19f8g4 + 38f9g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 19f4g9 + 19f5g8 + 19f6g7 + 19f7g6
+ 19f8g5 + 19f9g4,

h4 = f0g4 + 2f1g3 + f2g2 + 2f3g1 + f4g0 + 38f5g9 + 19f6g8 + 38f7g7
+ 19f8g6 + 38f9g5,

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + 19f6g9 + 19f7g8
+ 19f8g7 + 19f9g6,

h6 = f0g6 + 2f1g5 + f2g4 + 2f3g3 + f4g2 + 2f5g1 + f6g0 + 38f7g9
+ 19f8g8 + 38f9g7,

h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0
+ 19f8g9 + 19f9g8,

h8 = f0g8 + 2f1g7 + f2g6 + 2f3g5 + f4g4 + 2f5g3 + f6g2 + 2f7g1
+ f8g0 + 38f9g9,

h9 = f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2
+ f8g1 + f9g0.

Figure 8.1: Field multiplication in F2255−19 using radix 225.5.

of different execution units on the CPU core; see analysis in Section 8.1.3. Each
(f0gj , f

′
0g
′
j) then takes 1 vpmuludq, while each (figj , f

′
ig
′
j) where i > 0 takes 1

vpmuludq and 1 vpaddq. In total, it takes 109 vpmuludq and 95 vpaddq to compute
(h0, h

′
0), (h1, h

′
1), . . . , (h9, h

′
9). We denote such a vector of two field multiplications as

M2, including the carries that bring hk (and also h′k) back to 26 − (k mod 2) bits;
M2− represents M2 without carries. Similarly, we use S2 and S2− for squarings.

We perform a carry from hk to hk+1 (the indices work modulo 10), which is
denoted by hk → hk+1, in 3 steps:

• Perform a logical right shift for the 64-bit words in hk using a vpsrlq instruction.
The shift amount is 26− (k mod 2).

• Add the result of the first step into hk+1 using a vpaddq instruction.

• Mask out the most significant 38+(k mod 2) bits of hk using a vpand instruction.

For h9 → h0 the result of the shift has to be multiplied by 19 before being added to
h0. Note that the usage of vpsrlq suggests that we are using unsigned limbs; there
is no vectorized arithmetic shift instruction on Sandy Bridge and Ivy Bridge.

To reduce the number of bits in all of h0, h1, . . . , h9, the simplest way is to perform
the carry chain

h0 → h1 → h2 → h3 → h4 → h5 → h6 → h7 → h8 → h9 → h0 → h1.

8.1. ARITHMETIC IN F2255−19 97

instruction port throughput latency
vpmuludq 0 1 5
vpaddq either 1 or 5 2 1
vpsubq either 1 or 5 2 1
mul 0 and 1 1 3
imul 1 1 3
add either 0, 1, or 5 3 1
adc either two of 0,1,5 1 2

Table 8.2: Instructions for field arithmetic used in [BDL+11] and this chapter.
The data is mainly based on the well-known survey by Fog [Fog16]. The survey
does not specify the port utilization for mul, so we figured this out using the perfor-
mance counter (accessed using perf-stat). Throughputs are per-cycle. Latencies
are given in cycles.

The problem of the simple carry chain is that it suffers severely from the instruction
latencies. To mitigate the problem, we instead interleave the 2 carry chains

h0 → h1 → h2 → h3 → h4 → h5 → h6,

h5 → h6 → h7 → h8 → h9 → h0 → h1.

It is not always the case that there are two multiplications that can be paired
with each other in an elliptic-curve operation; sometimes there is a need to vectorize
a field multiplication internally. We use a similar approach to [BS12] to compute
h0, h1, . . . , h9 in this case; the difference is that we compute vectors (h0, h1), . . . ,
(h8, h9) as result. The strategy for performing the expensive carries on h0, h1, . . . , h9
is the same as [BS12]. Such an internally-vectorized field multiplication is denoted as
M.

8.1.3 Why is smaller radix better?
m takes 29 multiplication instructions (mul and imul), while M2 takes 109/2 = 54.5
multiplication instructions (vpmuludq) per field multiplication. How can our software,
(which is based on M2) be faster than [BDL+11] (which is based on m) using almost
twice as many multiplication instructions?

On Intel microarchitechtures, an instruction is decoded and decomposed into some
micro-operations (µops). Each µop is then stored in a pool, waiting to be executed
by one of the ports (when the operands are ready). On each Sandy Bridge and Ivy
Bridge core there are 6 ports. In particular, Port 0, 1, 5 are responsible for arithmetic.
The remaining ports are responsible for memory access, which is beyond the scope of
this chapter.

The arithmetic ports are not identical. For example, vpmuludq is decomposed into
1 µop, which is handled by Port 0 each cycle with latency 5. vpaddq is decomposed
into 1 µop, which is handled by Port 1 or 5 each cycle with latency 1. Therefore, an
M2− would take at least 109 cycles. Our experiment shows that M2− takes around
112 Sandy Bridge cycles, which translates to 56 cycles per multiplication.

98 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

The situation for m is more complicated: mul is decomposed into 2 µops, which
are handled by Port 0 and 1 each cycle with latency 3. imul is decomposed into
1 µop, which is handled by Port 1 each cycle with latency 3. add is decomposed
into 1 µop, which is handled by one of Port 0,1,5 each cycle with latency 1. adc
is decomposed into 2 µops, which are handled by two of Port 0,1,5 each cycle with
latency 2. In total it takes 25 mul, 4 imul, 20 add, and 20 adc, accounting for at least
(25 ·2 + 4 + 20 + 20 ·2)/3 = 38 cycles. Our experiment shows that m− takes 52 Sandy
Bridge cycles. The mov instructions explain a few cycles out of the 52 − 38 = 14
cycles. Also, the performance counter shows that the core fails to distribute µops
equally over the ports.

Of course, by just looking at these cycle counts it seems that M2 is still a bit
slower, but at least we have shown that the serial multiplier is not as powerful as it
seems to be. Here are some more arguments in favor of M2:

• m spends more cycles on carries thanM2 does: m takes 68 Sandy Bridge cycles,
while M2 takes 69.5 Sandy Bridge cycles per multiplication.

• The algorithm built uponM2 might have additions/subtractions. Some speedup
can be gained by interleaving the code; see Section 8.1.5.

• The computation might have some non-field-arithmetic part which can be im-
proved using vector unit; see Section 8.2.2.

8.1.4 Importance of using a small constant

For the ease of reduction, the prime fields used in ECC and HECC are often a big
power of 2 minus a small constant c. It might seem that as long as c is not too big, the
speed of field arithmetic would remain the same. However, in the following example,
we show that using the slightly larger c = 31 (2255 − 31 is the large prime before
2255 − 19) might already cause some overhead.

Consider two field elements f, g which are the results of two field multiplications.
Because the limbs are reduced, the upper bound of f0 would be close to 226, and the
upper bound of f1 would be close to 225, and so on; the same bounds apply for g.
Now suppose we need to compute (f − g)2, which is batched with another squaring
to form an S2. To avoid possible underflow, we compute the limbs of h = f − g as
hi = (fi + 2 · qi) − gi instead of hi = fi − gi, where qi is the corresponding limb
of 2255 − 19. As the result, the upper bound of h6 is around 3 · 226. To perform
the squaring, c · h26 is required. When c = 19 we can simply multiply h6 by 19
using 1 vpmuludq, and then multiply the product by h6 using another vpmuludq.
Unfortunately the same instructions do not work for c = 31, since 31 · h6 can take
more than 32 bits.

To overcome such problem, an easy solution is to use a smaller radix so that each
(reduced) limb takes fewer bits. This method would increase number of limbs and
thus increase the number of vpmuludq required. A better solution is to delay the
multiplication by c: instead of computing 31fi1gj1 +31fi2gj2 + · · · by first computing
31gj1 , 31gj2 , . . . , compute fi1gj1 + fi2gj2 + · · · and then multiply the sum by 31. The
sum can take more than 32 bits (and vpmuludq takes only 32-bit inputs), so the

8.2. THE CURVE25519 ELLIPTIC-CURVE-DIFFIE-HELLMAN SCHEME 99

multiplication by 31 cannot be handled by vpmuludq. Let s = fi1gj1 + fi2gj2 + · · · ,
one way to handle the multiplication by 31 is to compute 32s with one shift instruction
vpsllq and then compute 32s − s = 31s with one subtraction instruction vpsubq.
This solution does not make Port 0 busier as vpsllq also takes only one cycle in Port
0 as vpmuludq, but it does make Port 1 and 5 busier (because of vpsubq), which can
potentially increase the cost for S2− by a few cycles.

It is easy to imagine for some c’s the multiplication can not be handled in such a
cheap way as 31. In addition, delaying multiplication cannot handle as many c’s as
using a smaller radix; as a trivial example, it does not work if cfi1gj1 + cfi2gj2 + · · ·
takes more than 64 bits. We note that the computation pattern in the example is
actually a part of elliptic-curve operation (see lines 6–9 in Algorithm 1), meaning a
bigger constant c actually is likely to slow down elliptic-curve operations.

We comment that usage of a larger c has bigger impact on constrained devices. If
c is too big for efficient vectorization, at least one can go for the 64 × 64 → 128-bit
serial multiplier, which can handle a wide range of c without increasing number of
limbs. However, on ARM processors where the serial multiplier can only perform
32× 32→ 64-bit multiplications, even the serial multiplier would be sensitive to the
size of c. For even smaller devices the situation is expected to be worse.

8.1.5 Instruction scheduling for vectorized field arithmetic

The fact that µops are stored in a pool before being handled by a port allows the CPU
to achieve so called out-of-order execution: a µop can be executed before another µop
which is from an earlier instruction. This feature is sometimes viewed as the CPU
core being able to “look ahead” and execute a later instruction whose operands are
ready. However, the ability of out-of-order execution is limited: the core is not able
to look too far ahead. It is thus better to arrange the code so that each code block
contains instructions for each port.

While Port 0 is quite busy in M2, Port 1 and 5 are often idle. In an elliptic-curve
operation (see the following sections) an M2 is often preceded by a few field addi-
tions/subtractions. Since vpaddq and the vectorized subtraction instruction vpsubq
can only be handled by either Port 1 and Port 5, we try to interleave the multiplication
code with the addition/subtraction code to reduce the chance of having an idle port.
Experiment results show that the optimization brings a small yet visible speedup. It
seems more difficult for an algorithm built upon m to use the same optimization.

8.2 The Curve25519 elliptic-curve-Diffie-Hellman
scheme

[Ber06] defines Curve25519 as a function that maps two 32-byte input strings to a
32-byte output string. The function can be viewed as an x-coordinate-only scalar
multiplication on the curve

EM : y2 = x3 + 486662x2 + x

100 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

over F2255−19. The curve points are denoted as EM (F2255−19). The first input string
is interpreted as an integer scalar s, while the second input string is interpreted as a
32-byte encoding of xP , the x-coordinate of a point P ∈ EM (F2255−19); the output is
the 32-byte encoding of xsP .

Given a 32-byte secret key and the 32-byte encoding of a standard base point
defined in [Ber06], the function outputs the corresponding public key. Similarly, given
a 32-byte secret key and a 32-byte public key, the function outputs the corresponding
shared secret. Although the same routine can be used for generating both public keys
and shared secrets, the public-key generation can be done much faster by performing
the scalar multiplication on an equivalent curve. The rest of this section describes how
we implement the Curve25519 function for shared-secret computation and public-key
generation.

8.2.1 Shared-secret computation

Algorithm 1 The Montgomery ladder step for Curve25519

1: function LadderStep(x2, z2, x3, z3, xP)
2: t0 ← x3 − z3
3: t1 ← x2 − z2
4: x2 ← x2 + z2
5: z2 ← x3 + z3
6: z3 ← t0 · x2; z2 ← z2 · t1 . batched multiplications
7: x3 ← z3 + z2
8: z2 ← z3 − z2
9: x3 ← x23; z2 ← z22 . batched squarings

10: z3 ← xP · z2;
11: t0 ← t21; t1 ← x22 . batched squarings
12: x2 ← t1 − t0
13: z3 ← x2 · 121666
14: z2 ← t0 + z3
15: z2 ← x2 · z2; x2 ← t1 · t0 . batched multiplications
16: return (x2, z2, x3, z3)
17: end function

The best known algorithm for x-coordinate-only variable-base-point scalar multi-
plication on Montgomery curves is theMontgomery ladder. [BDL+11], [BS12] and our
software all use the Montgomery ladder for Curve25519 shared secret computation.
Similar to the double-and-add algorithm, the algorithm also iterates through each bit
of the scalar, from the most significant to the least significant one. For each bit of
the scalar the ladder performs a differential addition and a doubling. The differential
addition and the doubling together are called a ladder step. Since the ladder step
can be carried out by a fixed sequence of field operations, the Montgomery ladder is
almost intrinsically constant-time. We summarize the ladder step for Curve25519 in
Algorithm 1. Note that Montgomery uses projective coordinates.

8.2. THE CURVE25519 ECDH SCHEME 101

In order to make the best use of the vector unit (see Section 8.1), multiplications
and squarings are handled in pairs whenever convenient. The way we pair multiplica-
tions is shown in the comments of Algorithm 1. It is not specified in [BS12] whether
they pair multiplications and squarings in the same way, but this seems to be the
most natural way. Note that the multiplication by 121666 (line 13) and the multi-
plication by x1 (line 10) are not paired with other multiplications. We deal with the
two multiplications as follows:

• Compute multiplications by 121666 without carries using 5 vpmuludq.

• Compute multiplications by x1 without carries. This can be completed in 50
vpmuludq since we precompute the products of small constants (namely, 2, 19,
and 38) and limbs in x1 before the ladder begins.

• Perform batched carries for the two multiplications.

This uses far fewer cycles than handling the carries for the two multiplications sepa-
rately.

Note that we often have to “transpose” data in the ladder step. More specifi-
cally, after an M2 which computes (h0, h

′
0), . . . , (h9, h

′
9), we might need to compute

h + h′ and h − h′; see lines 6–8 of Algorithm 1. In this case, we compute (hi, hi+1),
(h′i, h

′
i+1) from (hi, h

′
i), (hi+1, h

′
i+1) for i ∈ {0, 2, 4, 6, 8}, and then perform additions

and subtractions on the vectors. The transpositions can be carried out using the “un-
pack” instructions vpunpcklqdq and vpunpckhqdq. Similarly, to obtain the operands
for M2 some transpositions are also required. Unpack instructions are the same as
vpaddq and vpsubq in terms of port utilization, so we also try to interleave them with
M2 or S2 as described in Section 8.1.5.

8.2.2 Public-key generation

Instead of performing a fixed-base scalar multiplication directly on the Montgomery
curve, we follow [LM13] to perform a fixed-base scalar multiplication on the twisted
Edwards curve

ET : −x2 + y2 = 1− 121665/121666x2y2

over F2255−19 and convert the result back to the Mongomery curve with one inversion.
The curve points are denoted as ET (F2255−19). There is an efficiently computable bira-
tional equivalence between ET and EM , which means the curves share the same group
structure and ECDLP difficulty. Unlike Mongomery curves, there are complete for-
mulas for point addition and doubling on twisted Edwards curves; we follow [BDL+11]
to use the formulas for the extended coordinates proposed in [HWC+08]. The com-
plete formulas allow utilization of a table of many precomputed points to accelerate
the scalar multiplication, which is the reason fixed-base multiplications (on both EM
and ET) can be carried out much faster than variable-base scalar multiplications.

In [BDL+11] a fixed-base scalar multiplication sB where B ∈ ET (F2255−19) and
s ∈ Z (B corresponds to the standard base point in EM (F2255−19)) is performed as
follows: write s (modulo the order of B) as

∑15
i=0 16isi where si ∈ {−8,−7, . . . , 7}

and obtain sB by computing the summation of s0B, s116B, . . . , s151615B. To obtain

102 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

si16iB, the strategy is to precompute several multiples of 16iB and store them in a
table, and then perform a constant-time table lookup using si as index on demand.
[BDL+11] also shows how to reduce the size of the table by dividing the sum into two
parts:

P0 = s0B + s2162B + · · ·+ s141614B

and
P1 = s1B + s3162B + · · ·+ s151614B.

sB = P0 + 16P1 is then obtained with 4 point doublings and 1 point addition. In this
way, the table contains only multiples of B, 162B, . . . , 1614B.

We do better by vectorizing between computations of P0 and P1: all the data
related to P0 and P1 are loaded into the lower half and upper half of the 128-bit regis-
ters, respectively. This type of computation pattern is very friendly for vectorization
since there no need to “transpose” the data as in the case of Section 8.2.1.

While parallel point additions can be carried out easily, an important issue is
how to perform parallel constant-time table lookups in an efficient way. In [BDL+11],
suppose there is a need to lookup siP , the strategy is to precompute a table containing
P, 2P, . . . , 8P , and then the lookup is carried out in two steps:

• Load |si|P in constant time, which is the main bottleneck of the table lookup.

• Negate |si|P if si is negative.

For the first step it is convenient to use the conditional move instruction (cmov):
To obtain each limb (of each coordinate) of |si|P , first initialize a 64-bit register to
the corresponding limb of ∞, then for each of P, 2P, . . . , 8P , conditionally move the
corresponding limb into the register. Computation of the conditions and conditional
negation are relatively cheap compared to the cmov instructions. [BDL+11] uses
a 3-coordinate system for precomputed points, so the table-lookup function takes
3 · 8 · 5 = 120 cmov instructions. The function takes 159 Sandy Bridge cycles or 158
Ivy Bridge cycles.

We could use the same routine twice for parallel table lookups, but we do better
by using vector instructions. Here is a part of the inner loop of our qhasm ([Ber07b])
code.

v0 = mem64[input_1 + 0] x2
v1 = mem64[input_1 + 40] x2
v2 = mem64[input_1 + 80] x2
v0 &= mask1
v1 &= mask1
v2 &= mask1
t0 |= v0
t1 |= v1
t2 |= v2

The first line v0 = mem64[input_1 + 0] x2 loads the first and second limb (each
taking 32 bits) of the first coordinate of P and broadcasts the value to the lower half
and upper half of the 128-bit register v0 using the movddup instruction. The line v0

8.3. VECTORIZING THE ED25519 SIGNATURE SCHEME 103

Algorithm 2 The doubling function for twisted Edwards curves

1: function ge_dbl_p2(X,Y, Z)
2: A← X2;B ← Y 2 . batched squarings
3: G← A−B
4: H ← A+B
5: C ← 2Z2;D = (X + Y)2 . batched squarings
6: E ← H −D
7: I ← G+ C
8: X ′ ← E · I;Y ′ ← G ·H . batched multiplications
9: Z ′ ← G · I

10: return (X ′, Y ′, Z ′)
11: end function

&= mask1 performs a bitwise AND of v0 and a mask; the value in the mask depends
on whether si = 1. Finally, v0 is ORed into t0, which is initialized in a similar way
as in the cmov-based approach. Similarly, the rest of the lines are for the second and
third coordinates. Similar code blocks are repeated 7 more times for 2P, 3P, . . . , 8P ,
and all the code blocks are surrounded by a loop which iterates through all the limbs.
In total it takes 3 · 8 · 5 · 2 = 240 logic instructions. The parallel table-lookup function
(inlined in our implementation) takes less than 160 Sandy/Ivy Bridge cycles, which
is almost twice as fast as the cmov-based table lookup function.

8.3 Vectorizing the Ed25519 signature scheme

This section describes how the Ed25519 verification is implemented with focus on the
challenge of vectorization. Since the public-key generation and signing process, as the
Curve25519 public-key generation, is bottlenecked by a fixed-base scalar multiplica-
tion on ET , the reader can check Section 8.2.2 for the implementation strategy.

8.3.1 Ed25519 verification

[BDL+11] verifies a message by computing the double-scalar multiplication of the form
s1P1 + s2P2. The double-scalar multiplication is implemented using a generalization
of the sliding-window method such that s1P1 and s2P2 share the doublings. With the
same window sizes, we do better by vectorizing the point doubling and point addition
functions.

On average each verification takes about 252 point doublings, accounting for
more than 110000 cycles. There are two doubling functions in our implementation;
ge_dbl_p2, which is adapted from the “E ← 2E” doubling described in [HWC+08],
is the most frequently used one; see [HWC+08] for the reason to use different dou-
bling and addition functions. On average ge_dbl_p2 is called 182 times per ver-
ification, accounting for more than 74000 cycles. The function is summarized in
Algorithm 2. Given (X : Y : Z) representing (X/Z, Y/Z) ∈ ET , the function returns
(X ′ : Y ′ : Z ′) = (X : Y : Z) + (X : Y : Z). As in Section 8.2.1, squarings and

104 CHAPTER 8. SANDY2X: NEW CURVE25519 SPEED RECORDS

multiplications are paired whenever convenient. However it is not always possible to
do so, as the multiplication in line 9 can not be paired with other operations. The
single multiplication slows down the function, and the same problem also appears in
addition functions.

Another problem is harder to see. E = X2 +Y 2− (X +Y)2 has limbs with upper
bound around 4 · 226, and I = X2 − Y 2 + 2Z2 has limbs with upper bound around
5 · 226. For the multiplication E · I, limbs of either E or I have to be multiplied by
19 (see Section 8.1.2), which can be more than 32 bits. This problem is solved by
performing extra carries on limbs in E before the multiplication. The same problem
appears in the other doubling function.

In general the computation pattern for verification is not so friendly for vector-
ization. However, even in this case our software still gains non-negligible speedup
over [BDL+11] and [LM13]. We conclude that the power of vector units on recent
Intel microarchitectures might have been seriously underestimated, and implemen-
tors for ECC software should consider trying vectorized multipliers instead of serial
multipliers.

9
How to manipulate curve standards:

a white paper for the black hat

More and more Internet traffic is encrypted. This poses a threat to our society as it
limits the ability of government agencies to monitor Internet communication for the
prevention of terrorism and globalized crime. For example, an increasing number of
servers use Transport Layer Security (TLS) as default (not only for transmissions that
contain passwords or payment information) and also most modern chat applications
encrypt all communication. This increases the cost of protecting society as it becomes
necessary to collect the required information at the end points, i.e., either the servers
or the clients. This requires agencies to either convince the service providers to make
the demanded information available or to deploy a back door on the client system
respectively. Both actions are much more expensive for the agencies than collecting
unprotected information from the transmission wire.

Fortunately, under reasonable assumptions, it is feasible for agencies to fool users
into deploying cryptographic systems that the users believe are secure but that the
agencies are able to break.

Elliptic-curve cryptography. Elliptic-curve cryptography (ECC) has a reputa-
tion for high security and has become increasingly popular. For definiteness we con-
sider the elliptic-curve Diffie–Hellman (ECDH) key-exchange protocol, specifically
“ephemeral ECDH”, which has a reputation of being the best way to achieve forward
secrecy. The literature models ephemeral ECDH as the following protocol ECDHE,P ,
Diffie–Hellman key exchange using a point P on an elliptic curve E:

1. Alice generates a private integer a and sends the ath multiple of P on E.

2. Bob generates a private integer b and sends bP .

105

106 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

3. Alice computes abP as the ath multiple of bP .

4. Bob computes abP as the bth multiple of aP .

5. Alice and Bob encrypt data using a secret key derived from abP .

There are various published attacks showing that this protocol is breakable for many
elliptic curves E, no matter how strong the encryption is. See Section 9.1 for details.
However, there are also many (E,P) for which the public literature does not indicate
any security problems. Similar comments apply to, e.g., elliptic-curve signatures.

This model begs the question of where the curve (E,P) comes from. The standard
answer is that a central authority generates a curve for the public (while advertis-
ing the resulting benefits for security and performance).1 This does not mean that
the public will accept arbitrary curves; our main objective in this chapter is to ana-
lyze the security consequences of various possibilities for what the public will accept.
The general picture is that Alice, Bob, and the central authority Jerry are actually
participating in the following three-party protocol ECDHA, where A is a function
determining the public acceptability of a standard curve:

−1. Jerry generates a curve E, a point P , auxiliary data S with A(E,P, S) = 1.
(The “seeds” for the NIST curves are examples of S; see Section 9.3.)

0. Alice and Bob verify that A(E,P, S) = 1.

1. Alice generates a private integer a and sends aP .

2. Bob generates a private integer b and sends bP .

3. Alice computes abP as the ath multiple of bP .

4. Bob computes abP as the bth multiple of aP .

5. Alice and Bob encrypt data using a secret key derived from abP .

Our paper is targeted at Jerry. We make the natural assumption that Jerry is co-
operating with a heroic eavesdropper Eve to break the encryption used by potential
terrorists Alice and Bob. The central question is how Jerry can use his curve-selection
flexibility to minimize the attack cost.

Obviously the cost cA of breaking ECDHA depends on A, the same way that
the cost cE,P of breaking ECDHE,P depends on (E,P). One might think that, to
evaluate cA, one simply has to check what the public literature says about cE,P ,
and then minimize cE,P over all (E,P, S) with A(E,P, S) = 1. The reality is more
complicated, for three reasons:

1See, e.g., ANSI X9.62 [ANS99] (“public key cryptography for the financial services industry”),
IEEE P-1363 [IEE00], SECG [Cer00a], NIST FIPS 186 [NIS00], ANSI X9.63 [ANS01], Brain-
pool [Bra05], NSA Suite B [NSA05], and ANSSI FRP256V1 [ANS11]. Note that this chapter is
not a historical review of which standards have been sabotaged and which have not; it is a sabotage
cost assessment and a guide for manipulating future standards.

107

1. There may be vulnerabilities not known to the public: curves E for which cE,P
is smaller than indicated by the best public attacks. Our starting assumption is
that Jerry and Eve are secretly aware of a vulnerability that applies to a fraction
ε of all curves that the public believes to be secure. The obvious strategy for
Jerry is to standardize a vulnerable curve. Of course, Jerry should object to
any public suggestions that a vulnerable curve could have been standardized.

2. Some choices of A limit the number of curves E for which there exists suitable
auxiliary data S. If 1/ε is much larger than this limit then Jerry cannot expect
any vulnerable (E,P, S) to have A(E,P, S) = 1. We show that, fortunately for
Jerry, this limit is much larger than the public thinks it is. See Sections 9.4 and
9.5.

3. Other choices of A do not limit the number of vulnerable E for which S exists
but nevertheless complicate Jerry’s task of finding a vulnerable (E,P, S) with
A(E,P, S) = 1. See Section 9.3 for analysis of the cost of this computation.

If Jerry succeeds in finding a vulnerable (E,P, S) with A(E,P, S) = 1, then Eve
simply exploits the vulnerability, obtaining access to the information that Alice and
Bob have encrypted for transmission.

Of course, this could require considerable computation for Eve, depending on the
details of the secret vulnerability. Obviously, given the risk of this chapter being
leaked to the public, it would be important for us to avoid discussing details of secret
vulnerabilities, even if we were aware of such vulnerabilities.2 Our goal in this chapter
is not to evaluate the cost of Eve’s computation, but rather to evaluate the impact of
A and ε upon the cost of Jerry’s computation.

For this evaluation it is adequate to use simplified models of secret vulnerabilities.
We specify various artificial curve criteria that have no connection to vulnerabilities
but that are satisfied by (E,P, S) with probability ε for various sizes of ε. We then
evaluate how difficult it is for Jerry to find (E,P, S) that satisfy these criteria and
that have A(E,P, S) = 1.

The possibilities that we analyze for A are models built from data regarding
what the public will accept. See Figure 9.1 for the data flow. Consider, for ex-
ample, the following data: the public has accepted without complaint the constants
sin(1), sin(2), . . . , sin(64) in MD5, the constants

√
2,
√

3,
√

5,
√

10 in SHA-1, the con-
stants 3

√
2, 3
√

3, 3
√

5, 3
√

7 in SHA-2, the constant (1 +
√

5)/2 in RC5, the constant
e = exp(1) in Brainpool, the constant 1/π in ARIA, etc. All of these constants
are listed in [Wik15b] as examples of “nothing up my sleeve numbers”. Extrapolating
from this data, we confidently predict that the public would accept, e.g., the constant
cos(1) used in our example curve BADA55-VPR-224 in Section 9.4. Enumerating
a complete list of acceptable constants would require more systematic psychological
experiments, so we have chosen a conservative acceptability function A in Section 9.4
that allows just 17 constants and their reciprocals.

The reader might object to our specification of ECDHA as implicitly assuming
that the party sabotaging curve choices to protect society is the same as the party

2Note to any journalists who might end up reading this chapter: There are no secret vulnerabili-
ties. Really. ECC is perfectly safe. You can quote Jerry.

108 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

Data regarding what
public will accept

��

Data regarding what
public will not accept

��
Plausible model of

public acceptability criterion A

��Hypothesized fraction ε
of acceptable curves
that are secretly weak

// Analysis of security
of ECDHA

Figure 9.1: Data flow in this chapter. The available data regarding public accept-
ability is stratified into five different models of the public acceptability criterion
A, considered in Sections 9.2, 9.3, 9.4, 9.5, and 9.6 respectively, with five differ-
ent shapes of the auxiliary curve data S. The security of each A is analyzed for
variable ε.

issuing curve standards to be used by Alice and Bob. In reality, these two parties are
different, and having the first party exercise sufficient control over the second party
is often a delicate exercise in finesse. See, for example, [Kel03; CFN+14].

Organization. Section 9.1 reviews the curve attacks known to the public and ana-
lyzes the probability that a curve resists these attacks; this probability has an obvious
impact on the cost of generating curves. Section 9.2, as a warm-up, shows how to
manipulate curve choices when A merely checks for these public vulnerabilities.

Section 9.3 shows how to manipulate “verifiably random” curve choices obtained by
hashing seeds. Section 9.4 shows how to manipulate “verifiably pseudorandom” curve
choices obtained by hashing “nothing-up-my-sleeves numbers”. Section 9.5 shows how
to manipulate “minimal” curve choices. Section 9.6 shows how to manipulate “the
fastest curve”.

Research contributions of this chapter. We appear to be the first to formally
introduce the three-party protocol ECDHA. The general idea of Section 9.3 is not
new, but our cost analysis is new. We are the first to implement the attack,3 showing
how little computer power is necessary to target highly unusual curve properties.
Our theoretical and experimental analysis of the percentage of secure curves (see
Section 9.1) is also new.

The general idea of Sections 9.4 and 9.5 is new. We are the first to show that curves
using so-called “nothing-up-my-sleeves numbers” can very well be manipulated to con-
tain a secret vulnerability. We present concrete ways to gain many bits of freedom

3To be precise: No previous implementations are reported in the public literature.

9.1. PUBLIC SECURITY ANALYSES 109

and analyze how likely a new vulnerability needs to be in order to hide in this frame-
work. It is surprising that millions of curves can be generated by plausible variations
of the Brainpool [Bra05] curve-generation procedure, and that hundreds of thousands
of curves can be generated by plausible variations of the Microsoft [BCL+15] curve-
generation procedure.

As discussed in Sections 9.3.2 and 9.4, we encourage Jerry to experimentally study
the exact boundary of what the public will accept. In followup work to Section 9.4,
Aumasson has posted a “Generator of ‘nothing-up-my-sleeve’ (NUMS) constants” that
“generates close to 2 million constants, and is easily tweaked to generate many more”.
See [Aum15].

9.1 Pesky public researchers and their security
analyses

One obstacle Jerry has to face in deploying his backdoored elliptic curves is that
public researchers have raised awareness of certain weaknesses an elliptic curve may
have. Once sufficient awareness of a weakness has been raised, many standardization
committees will feel compelled to mention that weakness in their standards. This in
turn may alert the targeted users, i.e., the general public: some users will check what
standards say regarding the properties that an elliptic curve should have or should
not have.

The good thing about standards is that there are so many to choose from. Stan-
dards evaluating or claiming the security of various elliptic curves include ANSI
X9.62 (1999) [ANS99], IEEE standard P1363 (2000) [IEE00], Certicom SEC 1 v1
(2000) [Cer00b], Certicom SEC 2 v1 (2000) [Cer00a], NIST FIPS 186-2 (2000) [NIS00],
ANSI X9.63 (2001) [ANS01], Brainpool (2005) [Bra05], NSA Suite B (2005) [NSA05],
Certicom SEC 1 v2 (2009) [Cer09], Certicom SEC 2 v2 (2010) [Cer10], OSCCA SM2
(2010) [OSC10a; OSC10b], ANSSI FRP256V1 (2011) [ANS11], and NIST FIPS 186-4
(2013) [NIS13]. These standards vary in many details, and also demonstrate impor-
tant variations in public acceptability criteria, an issue explored in depth later in this
chapter.

Unfortunately for Jerry, some public criteria have become so widely known that all
of the above standards agree upon them. Jerry’s curves need to satisfy these criteria.
This means not only that Jerry will be unable to use these public attacks as back
doors, but also that Jerry will have to bear these criteria in mind when searching for
a vulnerable curve. Perhaps the vulnerability known secretly to Jerry does not occur
in curves that satisfy the public criteria; on the other hand, perhaps this vulnerability
occurs more frequently in curves that satisfy the public criteria than in general curves.
The chance ε of a curve being vulnerable is defined relative to the curves that the
public will accept.

This section has three goals:

• Review these standard criteria for “secure” curves, along with attacks those
pesky researchers have found. Jerry must be careful, when designing and justi-
fying his curve, to avoid revealing attacks outside this list; such attacks are not
known to the public.

110 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

• Analyze the probability δ that a curve satisfies the standard security criteria.
This has a direct influence on Jerry’s curve-generation cost. Two particular
criteria, “small cofactor” and “small twist cofactor”, are satisfied by only a small
fraction of curves.

• Analyze the probability that a curve is actually feasible to break by various
public attacks. It turns out that there are many probabilities on different scales,
showing that one should also consider a range of probabilities ε for Jerry’s secret
vulnerability. Recall that ε is, by definition, the probability that curves passing
the public criteria are secretly vulnerable to Jerry’s attack.

Each curve that Jerry tries works with probability only δε. The number of curves that
Jerry can afford to try and is allowed to try depends on various optimizations and
constraints analyzed later in this chapter; combining this number with δε immediately
reveals Jerry’s overall success chance at creating a vulnerable curve that passes the
public criteria, avoiding alarms from the pesky researchers.

9.1.1 Warning: math begins here
�

For simplicity we cover only prime fields here. If Jerry’s secret vulnerability works
only in binary fields then we would expect Jerry to have a harder time convincing his
targets to use vulnerable curves, although of course he should try.

Let E be an elliptic curve defined over a large prime field Fp. One can always write
E in the form y2 = x3 + ax + b. Most curve standards choose a = −3 for efficiency
reasons. Practically all curves have low-degree isogenies to curves with a = −3, so
this choice does not affect security.

Write |E(Fp)| for the number of points on E defined over Fp, and write |E(Fp)|
as p + 1 − t. Hasse’s theorem (see, e.g., [Sil09]) states that |E(Fp)| is in the “Hasse
interval” [p+ 1− 2

√
p, p+ 1 + 2

√
p]; i.e., t is between −2

√
p and 2

√
p.

Define ` as the largest prime factor of |E(Fp)|, and define the “cofactor” h as
|E(Fp)|/`. Let P be a point on E of order `.

9.1.2 Review of public ECDLP security criteria. Elliptic curve cryptogra-
phy is based on the believed hardness of the elliptic-curve discrete-logarithm problem
(ECDLP), i.e., the belief that it is computationally infeasible to find a scalar k sat-
isfying Q = kP given a random multiple Q of P on E. The state-of-the-art public
algorithm for solving the ECDLP is Pollard’s rho method (with negation), which on
average requires approximately 0.886

√
` point additions. Most publications require

the value ` to be large; for example, the SafeCurves web page [BL15] requires that
0.886

√
` > 2100.

Some standards put upper limits on the cofactor h, but the limits vary. FIPS
186-2 [NIS00, page 24] claims that “for efficiency reasons, it is desirable to take the
cofactor to be as small as possible”; the 2000 version of SEC 1 [Cer00b, page 17]
required h ≤ 4; but the 2009 version of SEC 1 [Cer09, pages 22 and 78] claims that
there are efficiency benefits to “some special curves with cofactor larger than four”
and thus requires merely h ≤ 2α/8 for security level 2α. We analyze a few possibilities
for h and later give examples with h = 1; many standard curves have h = 1.

9.1. PUBLIC SECURITY ANALYSES 111

Another security parameter is the complex-multiplication field discriminant (CM
field discriminant) which is defined as D = (t2−4p)/s2 if (t2−4p)/s2 ≡ 1 (mod 4) or
otherwise D = 4(t2−4p)/s2, where t is defined as p+1−|E(Fp)| and s2 is the largest
square dividing t2−4p. One standard, Brainpool, requires |D| to be large (by requiring
a related quantity, the “class number”, to be large). However, other standards do not
constrain D, there are various ECC papers choosing curves where D is small, and the
only published attacks related to the size of D are some improvements to Pollard’s
rho method on a few curves. If Jerry needs a curve with small D then it is likely that
Jerry can convince the public to accept the curve. We do not pursue this possibility
further.

All standards prohibit efficient additive and multiplicative transfers. An additive
transfer reduces the ECDLP to an easy DLP in the additive group of Fp; this transfer
is applicable when ` equals p. A degree-k multiplicative transfer reduces the ECDLP
to the DLP in the multiplicative group of Fpk where the problem can be solved
efficiently using index calculus if the embedding degree k is not too large; this transfer
is applicable when ` divides pk − 1. All standards prohibit ` = p, ` dividing p− 1, `
dividing p + 1, and ` dividing various larger pk − 1; the exact limit on k varies from
one standard to another.

9.1.3 ECC security vs. ECDLP security

The most extensive public list of requirements is on the SafeCurves web page [BL15].
SafeCurves covers hardness of ECDLP, generally imposing more stringent constraints
than the standards listed in Section 9.1.2; for example, SafeCurves requires the dis-
criminant D of the CM field to satisfy |D| > 2100 and requires the order of p modulo
`, i.e., the embedding degree, to be at least (`−1)/100. Potentially more troublesome
for Jerry is that SafeCurves also covers the general security of ECC, i.e., the security
of ECC implementations.

For example, if an implementor of NIST P-224 ECDH uses the side-channel-
protected scalar-multiplication algorithm recommended by Brier and Joye [BJ02],
reuses an ECDH key for more than a few sessions,4 and fails to perform a moderately
expensive input validation that has no impact on normal usage,5 then a twist attack
finds the user’s secret key using approximately 258 elliptic-curve additions. See [BL15]
for details. SafeCurves prohibits curves with low twist security, such as NIST P-224.

Luckily for Jerry, the other standards listed above focus on ECDLP hardness and
impose very few additional ECC security constraints. This gives Jerry the freedom
(1) to choose a non-SafeCurves-compliant curve that encourages insecure ECC im-
plementations even if ECDLP is difficult, and (2) to deny that there are any security
problems. Useful denial text can be found in a May 2014 presentation [Moo14a] from
NIST: “The NIST curves do NOT belong to any known class of elliptic curves with
weak security properties. No sufficiently large classes of weak curves are known.”

4[CFN+14, Section 4.2] reports that Microsoft’s SChannel automatically reuses “ephemeral” keys
“for two hours”.

5A very recent paper [JSS15] reports complete breaks of the ECC implementations in Bouncy
Castle and Java Crypto Extension, precisely because those implementations fail to validate input
points.

112 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

Unfortunately, there is some risk that twist-security and other SafeCurves criteria
will be added to future standards.6 This chapter considers the possibility that Jerry is
forced to generate twist-secure curves; it is important for Jerry to be able to sabotage
curve standards even under the harshest conditions. Obviously it is also preferable
for Jerry to choose a curve for which all implementations are insecure, rather than
merely a curve that encourages insecure implementations.

Twist-security requires the twist E′ of the original curve E to be secure. If
|E(Fp)| = p + 1 − t then |E′(Fp)| = p + 1 + t. Define `′ as the largest prime fac-
tor of p+1+ t. SafeCurves requires 0.886

√
`′ > 2100 to prevent Pollard’s rho method;

`′ 6= p to prevent additive transfers; and p having order at least (`′ − 1)/100 mod-
ulo `′ to prevent multiplicative transfers. SafeCurves also requires various “combined
attacks” to be difficult; this is automatic when cofactors are very small, i.e. when
(p+ 1− t)/` and (p+ 1 + t)/`′ are very small integers.

9.1.4 The probability δ of passing public criteria

This subsection analyzes the probability of random curves passing the public criteria
described above.

We begin by analyzing how many random curves have small cofactors. As illus-
trations we consider cofactors h = 1, h = 2, and h = 4. Note that, for primes p large
enough to pass a laugh test (at least 224 bits), curves with these cofactors automati-
cally satisfy the requirement 0.886

√
` > 2100; in other words, requiring a curve to have

a small cofactor supersedes requiring a curve to meet minimal public requirements
for security against Pollard’s rho method.

Let π(x) be the number of primes p ≤ x, and let π(S) be the number of primes
p in a set S. The prime-number theorem states that the ratio between π(x) and
x/ log x converges to 1 as x → ∞, where log is the natural logarithm. Explicit
bounds such as [RS62] are not sufficient to count the number of primes in a short
interval I = [x − y, x], but there is nevertheless ample experimental evidence that
π(I) is very close to y/ log x when y is larger than

√
x.

The number of integers in I of the form `, 2`, or 4`, where ` is prime, is the same
as the total number of primes in the intervals I1 = [x − y, x], I2 = [(x − y)/2, x/2]
and I4 = [(x− y)/4, x/4], namely

π(I1) + π(I2) + π(I4) ≈ y

log x
+

y/2

log (x/2)
+

y/4

log (x/4)
=

∑
h∈{1,2,4}

y/h

log(x/h)
.

Take x = p + 1 + 2
√
p and y = 4

√
p to see that the number of such integers in

the Hasse interval is approximately
∑
h∈{1,2,4}(4

√
p/h)/(log ((p+ 1 + 2

√
p)/h)). The

total number of integers in the Hasse interval is almost exactly 4
√
p, so the chance of

6For example, after we wrote this, CFRG appeared to reach consensus on twist-secure curves.
The resulting documents are still in draft form but the risk is clear. On the other hand, a recent
document [LW15] claims that “using twist secure curves can lead to insecure implementations and
degrade security”; the details of these claims have already received various public objections, but one
can still imagine the authors of [LW15] issuing a new non-twist-secure standard.

9.1. PUBLIC SECURITY ANALYSES 113

an integer in the interval having the form `, 2`, or 4` is approximately∑
h∈{1,2,4}

1

h log ((p+ 1 + 2
√
p)/h)

. (9.1)

This does not imply, however, that the same approximation is valid for the number
of points on a random elliptic curve. It is known, for example, that the number of
points on an elliptic curve is odd with probability almost exactly 1/3, not 1/2; this
suggests that the number is prime less often than a uniformly distributed random
integer in the Hasse interval would be.

A further difficulty is that we need to know not merely the probability that the
cofactor h is small, but the joint probability that both h and h′ = (p + 1 + t)/`′ are
small. Even if one disregards the subtleties in the distribution of p+ 1− t, one should
not expect (e.g.) the probability that p + 1 − t is prime to be independent of the
probability that p+ 1 + t is prime: for example, if one quantity is odd then the other
is also odd.

Galbraith and McKee in [GM00, Conjecture B] formulated a precise conjecture
for the probability of any particular h (called “k” there). Perhaps the techniques of
[GM00] can be extended to formulate a conjecture for the probability of any particular
pair (h, h′). However, no such conjectures appear to have been formulated yet, let
alone tested.

To collect facts we performed the following experiment: take p = 2224 − 296 + 1
(the NIST P-224 prime, which is also used in the following sections), and count the
number of points on 1000000 curves. Specifically, we took the curves y2 = x3−3x+1
through y2 = x3 − 3x + 1000001, skipping the non-elliptic curve y2 = x3 − 3x + 2.
It is conceivable that the small coefficients make these curves behave nonrandomly,
but the same type of nonrandomness appears naturally in Section 9.5, so this is a
relevant experiment. Furthermore, the simple description makes the experiment easy
to reproduce.

Within this sample we found probability 0.003705 of h = 1, probability 0.002859 of
h = 2, and probability 0.002372 of h = 4, with total 0.008936 ≈ 2−7. We also found,
unsurprisingly, practically identical probabilities for the twist cofactor: probability
0.003748 of h′ = 1, probability 0.002902 of h′ = 2, and probability 0.002376 of h′ = 4,
with total 0.009026.

For comparison, Formula (9.1) evaluates to approximately 0.011300 (about 25%
too optimistic), built from 0.006441 for h = 1 (about 74% too optimistic), 0.003235 for
h = 2 (about 13% too optimistic), and 0.001625 for h = 4 (about 32% too pessimistic).

In our sample we found probability 0.000049 that simultaneously h ∈ {1, 2, 4} and
h′ ∈ {1, 2, 4}. This provides reasonable confidence, although not a guarantee, that the
events h ∈ {1, 2, 4} and h′ ∈ {1, 2, 4} are statistically dependent: independence would
mean that the joint event would occur with probability approximately 0.000081, so a
sample of size 1000000 would contain ≤49 such curves with probability under 0.0001.

We found probability 0.000032 ≈ 2−15 of h = h′ = 1. Our best estimate, with the
caveat of considerable error bars, is therefore that Jerry must try about 215 curves
before finding one with h = h′ = 1. If Jerry is free to neglect twist security, searching
only for h = 1, then the probability jumps by two orders of magnitude to about 2−8.
If Jerry is allowed to take any h ∈ {1, 2, 4} then the probability is about 2−7.

114 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

These probabilities are not noticeably affected by the SafeCurves requirements re-
garding the CM discriminant, additive transfers, and multiplicative transfers. Specif-
ically, random curves have a large CM field discriminant, practically always meeting
the SafeCurves CM criterion; none of our experiments found a CM field discriminant
below 2100. We also found, unsurprisingly, no curves with ` = p. As for multiplicative
transfers: Luca, Mireles, and Shparlinski gave a theoretical estimate [LMS04] for the
probability that for a sufficiently large prime number p and a positive integer K with
logK = O(log log p) a randomly chosen elliptic curve E(Fp) has embedding degree
k ≤ K; this result shows that curves with small embedding degree are very rare.
The SafeCurves bound K = (` − 1)/100 is not within the range of applicability of
their theorem, but experimentally we found that about 99% of all curves had a high
embedding degree ≥ K.

9.1.5 The probabilities for various feasible attacks

We now consider various feasible public attacks as models of Jerry’s secret vulnera-
bility. Specifically, for each attack, we evaluate the probability that the attack works
against curves that were not chosen to be secure against this type of attack. Any
such probability is a reasonable guess for an ε of interest to Jerry.

At the low end is, e.g., an additive transfer, applying only to curves having exactly
p points. The probability here is roughly p−1/2: e.g., below 2−100 for the NIST P-224
prime.

At the high end, most curves fail the “rho” and “twist” security criteria; see Sec-
tion 9.1.4. But this does not mean that the curves are feasible to break, or that the
breaking cost is low enough for Jerry to usefully apply to billions of targets. These
security criteria are extremely cautious, staying far away from anything potentially
breakable by these attacks. For example, ` ≈ 2150 fails the SafeCurves security cri-
teria but still requires about 275 elliptic-curve operations to break by the rho attack,
costing roughly 100 million watt-years of energy with current hardware, a feasible but
highly nontrivial cost. A much smaller ` ≈ 2120 would require about 260 elliptic-curve
operations, and breaking 230 targets by standard multiple-target techniques would
again require about 275 elliptic-curve operations. Even smaller values of ` are of
interest for twist attacks.

The prime-number theorem can be used to estimate the probabilities of various
sizes of ` as in Section 9.1.4, but it loses applicability as ` drops below√p. To estimate
the probability for a wider range of ` we use the following result by Dickman (see,
e.g., [Gra08]). Define Ψ(x, y) as the number of integers ≤ x whose largest prime factor
is at most y; these numbers are called y-smooth integers. Dickman’s result is then as
follows:

Ψ(x, y) ∼ xρ(u) as x→∞, where x = yu.

Here ρ, the “Dickman ρ function”, satisfies ρ(u) = 1 for 0 ≤ u ≤ 1 and −uρ′(u) =
ρ(u− 1) for u ≥ 1, where ρ′ means the right derivative. It is not difficult to compute
ρ(u) to high accuracy.

We experimentally verified how well ` adheres to this estimate, again for the NIST
P-224 prime. For each k we used the Dickman rho function to compute an estimate

9.1. PUBLIC SECURITY ANALYSES 115

Figure 9.2: Largest prime factor versus the probability. Blue: The regular curves
E. Orange: The twists of the curves E. Black: The Dickman estimate. Orange is
more visible than blue because orange is plotted on top of blue.

for the number of integers in the Hasse interval whose largest prime factor has exactly
k bits:

Ψ(p+1+2
√
p, 2k)−Ψ(p+1−2

√
p, 2k)−Ψ(p+1+2

√
p, 2k−1)+Ψ(p+1−2

√
p, 2k−1).

We divided this by 4
√
p (the size of the Hasse interval) to obtain the black graph in

Figure 9.2. We also experimentally computed (for a somewhat smaller sample than
in Section 9.1.4) the fraction of curves where ` has k bits, and the fraction of curves
where `′ has k bits, shown as blue and orange dots in Figure 9.2. The dots are below
the right end of the graph in Figure 9.2 for the reasons explained in Section 9.1.4; for
smaller values of ` the estimate closely matches the experimental data.

About 20% of the 224-bit curves have ` < 2100, producing a tolerable rho attack
cost, around 250 elliptic-curve operations. However, ρ(u) drops rapidly as u increases
(it is roughly 1/uu), so the chance of achieving this reasonable cost also drops rapidly
as the curve size increases. For 256-bit curves the chance is ρ(2.56) ≈ 0.12 ≈ 2−3. For
384-bit curves the chance is ρ(3.84) ≈ 0.0073 ≈ 2−7. For 512-bit curves the chance is
ρ(5.12) ≈ 0.00025 ≈ 2−12.

We now switch from considering rho attacks against arbitrary curves to considering
twist attacks against curves with cofactor 1. For a twist attack to fit into 250 elliptic-
curve operations, the largest prime `′ dividing p+ 1 + t must be below 2100, but also
the second-largest prime dividing p+1+ t must be below 250; see generally [BL15]. In
other words, p+1+t must be (2100, 250)-semismooth. Recall that an integer is defined
to be (y, z)-semismooth if none of its prime factors is larger than y and at most one of
its prime factors is larger than z. The portion of the twist attack corresponding to the
second-largest prime is difficult to batch across multiple targets, so it is reasonable to
consider even smaller limits for that prime.

116 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

p k = 30 k = 40 k = 50 k = 60 k = 70 k = 80

P-224 prime 2−15.74 2−8.382 2−4.752 2−2.743 2−1.560 2−0.8601

P-256 prime 2−20.47 2−11.37 2−6.730 2−4.132 2−2.551 2−1.557

P-384 prime 2−42.10 2−25.51 2−16.65 2−11.37 2−7.977 2−5.708

P-521 prime 2−68.64 2−43.34 2−29.57 2−21.16 2−15.63 2−11.81

Table 9.1: Estimated probability that an elliptic curve modulo p has largest twist
prime at most 22k and second largest twist prime at most 2k, i.e., that an elliptic
curve modulo p is vulnerable to a twist attack using approximately 2k operations.
Estimates rely on the method of [BP96] to compute asymptotic semismoothness
probabilities.

We estimated this semismoothness probability using the same approach as for rho
attacks. First, estimate the semismoothness probability for p + 1 + t as the semis-
moothness probability for a uniform random integer in the Hasse interval. Second,
estimate the semismoothness probability for a uniform random integer using a known
two-variable generalization of ρ. Third, compute this generalization using a method
of Bach and Peralta [BP96]. The results range from 2−6.730 for 256-bit curves down
to 2−29.57 for 521-bit curves. Table 9.1 shows the results of similar computations for
several sizes of primes and several limits on feasible attack costs.

To summarize, feasible attacks in the public literature have a broad range of
success probabilities against curves not designed to resist those attacks; probabilities
listed above include 2−4, 2−8, 2−11, 2−16, and 2−25. It is thus reasonable to consider a
similarly broad range of possibilities for ε, the probability that a curve passing public
security criteria is vulnerable to Jerry’s secret attack.

9.2 Manipulating curves

Here our targets are users with minimal acceptability criteria: that is, we assume that
A(E,P, S) checks only the public security criteria for (E,P) described in Section 9.1.
The auxiliary data S might be used to communicate, e.g., a precomputed |E(Fp)| to
be verified by the user, but is not used to constrain the choice of (E,P). Curves that
pass the acceptability criteria are safe against known attacks, but have no protection
against Jerry’s secret vulnerability.

9.2.1 Curves without public justification

Here are two examples of standard curves distributed without any justification for
how they were chosen. These examples suggest that there are many ECC users who
do in fact have minimal acceptability criteria.

As a first example, we look at the FRP256V1 standard [ANS11] published in 2011
by the Agence nationale de la sécurité des systèmes d’information (ANSSI). This
curve is y2 = x3 − 3x+ b over Fp, where

9.2. MANIPULATING CURVES 117

b = 0xEE353FCA5428A9300D4ABA754A44C00FDFEC0C9AE4B1A1803075ED967B7BB73F,
p = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03.

Another example is a curve published by the Office of State Commercial Cryptog-
raphy Administration (OSCCA) in China along with the SM2 algorithms in 2010 (cf.
[OSC10b; OSC10a]). The curve is of the same form as the ANSSI one with

b = 0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
p = 0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF.

Each curve E is also accompanied by a point P . The curves meet the ECDLP
requirements7 reviewed in Section 9.1. The only further data provided with these
curves is data that could also have been computed efficiently by users from the above
information. Nothing in the curve documentation suggests any verification that would
have further limited the choice of curves.

9.2.2 The attack

The attack is straightforward. Since the only things that users check are the public
security criteria, Jerry can continue generating curves for a fixed p (either randomly
or not) that satisfy the public criteria until he gets one that is vulnerable to his secret
attack. Alternatively, Jerry can generate curves vulnerable to his secret attack and
check them against the public security criteria. Every attack (publicly) known so far
allows efficient computation of vulnerable curves, so it seems likely that the same will
be true for Jerry’s secret vulnerability. After finding a vulnerable curve, Jerry simply
publishes it.

Of course, Jerry’s vulnerability must not depend on any properties excluded by the
public security criteria, and there must be enough vulnerable curves. Enumerating
27 vulnerable curves over Fp is likely to be sufficient if Jerry can ignore twist-security,
and enumerating 215 vulnerable curves over Fp is likely to be sufficient even if twist-
security is required. See Section 9.1.

Even if Jerry’s curves are less frequent, Jerry can increase his chances by also
varying the prime p. To simplify our analysis we do not take advantage of this
flexibility in this section: we assume that Jerry is forced to reuse a particular standard
prime such as a NIST prime or the ANSSI prime. We emphasize, however, that the
standard security requirements do not seriously scrutinize the choice of prime, and
existing standards vary in their choices of primes. Any allowed variability in p would
also improve the attack in Section 9.4, and we do vary p in Section 9.5.

9.2.3 Implementation

We implemented the attack to demonstrate that it is really feasible in practice. In our
implementation the same setting as above is adopted and even made more restrictive:
the resulting curve should be of the form y2 = x3 − 3x + b over Fp, where p is the
same as for the ANSSI curve. The public security criteria we consider are all the

7But not the SafeCurves requirements. Specifically, FRP256V1 has twist security 279, and the
OSCCA curve has twist security 296.

118 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

p = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03 # standard ANSSI prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

A = p-3 # standard -3 modulo p
B = 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p F1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03
A F1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C00
B BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48

Figure 9.3: A procedure to generate the new BADA55-R-256 curve.

standard ECDLP security criteria plus twist security, and we further require that
both cofactors are 1.

Of course, as explained in the introduction, we will not include any actual secret
vulnerability in this white paper. We instead use a highly structured parameter b
as an artificial model of a secret vulnerability. We show that we can construct a
curve with such a b that passes all the public criteria. In reality, Jerry would select
a curve with a secret vulnerability rather than a curve with our artificial model of a
vulnerability, and would use a trustworthy curve name such as TrustedCurve-R-256.

Our attack is implemented using the Sage computer algebra system [Ste+15]. We
took 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55EC as the
start value for b and incremented b until we found a curve that meets the public
security criteria. This corresponds to Jerry iteratively checking whether curves that
are vulnerable to the secret attack fulfill the public criteria.

As a result we found a desired curve, which we call BADA55-R-256, with b =
0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA5A57 after 1131 in-
crements within 78 minutes on a single core of an AMD CPU.8 One can easily check
using a computer-algebra system that the curve does meet all the public criteria. It
is thus clear that users who only verify public security criteria can be very easily
attacked, and Jerry has an easy time if he is working for or is trusted by ANSSI,
OSCCA, or a similar organization.

8Note that a lucky attacker starting from
0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA is able to find
the following secure parameter already within 43 minutes after only 622 increments:
b = 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48.

9.3. MANIPULATING SEEDS 119

9.3 Manipulating seeds

Section 9.2 deals with the easiest case for Jerry that the users are satisfied verifying
public security criteria. However some audiences might demand justifications for the
curve choices. In this section, we consider users who are suspicious that the curve
parameters might be maliciously chosen to enable a secret attack. Empirically many
users are satisfied if they get a hash verification routine as justification; see, e.g., ANSI
X9.62 [ANS99], IEEE P1363 [IEE00], SEC 2 [Cer10], or NIST FIPS 186-2 [NIS00].
Hash verification routines mean that Jerry cannot use a very small set of vulnerable
curves, but we will show below that he has good chances to get vulnerable curves
deployed if they are just somewhat more common.

9.3.1 Hash verification routine

As the name implies, a hash verification routine involves a cryptographic hash func-
tion. The inputs to the routine are the curve parameters and a seed that is published
along with the curve. Usually the seed is hashed to compute a curve parameter or
point coordinate. The ways of computing the parameters differ but the public justi-
fication is that these bind the curve parameters to the hash value, making them hard
to manipulate since the hash function is preimage resistant9. In addition the user
verifies a set of public security criteria. We focus on the obstacle that Jerry faces and
call curves that can be verified with such routines verifiably hashed curves.

For Jerry’s marketing we do not recommend the phrase “verifiably hashed”: it is
better to claim that the curves are totally random (even though this is not what is
being verified) and that these curves could not possibly be manipulated (even though
Jerry is in fact quite free to manipulate them). For example, ANSI X9.62 [ANS99,
page 31] speaks of “selecting an elliptic curve verifiably at random”; SEC 2 [Cer10, copy
and paste: page 8 and page 18] claims that “verifiably random parameters offer some
additional conservative features” and “that the parameters cannot be predetermined”.
NIST’s marketing in [NIS00] is not as good: NIST uses the term “pseudo-random
curves”.

Below we recall the curve verification routine for the NIST P-curves. The routine
is specified in NIST FIPS 186-2 [NIS00].

Each NIST P-curve is of the form y2 = x3 − 3x + b over a prime field Fp and is
published with a seed s. The hash function SHA-1 is denoted as SHA1; recall that
SHA-1 produces a 160-bit hash value. The bit length of p is denoted by m. We use
bin(i) to denote the 20-byte big-endian representation of some integer i and use int(j)
to denote the integer with binary expansion j. For given parameters b, p, and s, the
verification routine is:

1. Let z ← int(s). Compute hi ← SHA1(si) for 0 ≤ i ≤ v, where si ← bin((z +
i) mod 2160) and v = b(m− 1)/160c.

2. Let h be the rightmost m− 1 bits of h0||h1|| · · · ||hv. Let c← int(h).

9If Jerry has a back door in the hash function this situation is no different than in Section 9.2, so
we will not assume this feature.

120 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

3. Verify that b2c = −27 in Fp.

To generate a verifiably hashed curve one starts with a seed and then follows the
same steps 1 and 2 as above. Instead of step 3 one tries to solve for b given c; this
succeeds for about 50% of all choices for s. The public perception is that this process
is repeated with fresh seeds until the first resulting curve satisfies all public security
criteria.

9.3.2 Acceptability criteria

One might think that the public acceptability criteria are defined by the NIST verifi-
cation routine stated above: i.e., A(E,P, s) = 1 if and only if (E,P) passes the public
security criteria from Section 9.1 and (E, s) passes the verification routine stated
above with seed s and E defined as y2 = x3 − 3x+ b.

However, the public acceptability criteria are not actually so strict. P1363 allows
y2 = x3 +ax+ b without the requirement a = −3. P1363 does require b2c = a3 where
c is a hash as above, but neither P1363 nor NIST gives a justification for the relation
b2c = a3, and it is clear that the public will accept different relations. For example,
the Brainpool curves (see Section 9.4) use the simpler relations a = g and b = h
where g and h are separate hashes. One can equivalently view the Brainpool curves
as following the P1363 procedure but using a different hash for c, namely computing
c as g3/h2 where again g and h are separate hashes. Furthermore, even though NIST
and Brainpool both use SHA-1, SHA-1 is not the only acceptable hash function; for
example, Jerry can easily argue that SHA-1 is outdated and should be replaced by
SHA-2 or SHA-3.

We do not claim that the public would accept any relation, or that the public
would accept any choice of “hash function”, allowing Jerry just as much freedom as
in Section 9.2. The exact boundaries of public acceptability are complicated and
not immediately obvious. We have determined approximations to these boundaries
by extrapolating from existing data (see, e.g., Section 9.4), and we encourage Jerry
to carry out large-scale scientific surveys, while taking care to prevent leaks to the
public.

9.3.3 The attack

Jerry begins the attack by defining a public hash verification routine. As explained
above, Jerry has some flexibility to modify this routine. This flexibility is not neces-
sary for the rest of the attack in this section (for example, Jerry can use exactly the
NIST verification routine) but a more favorable routine does improve the efficiency
of the attack. Our cost analysis below makes a particularly efficient choice of routine.

Jerry then tries one seed after another until finding a seed for which the verifiably
hashed curve (1) passes the public security criteria but (2) is subject to his secret
vulnerability. Jerry publishes this seed and the resulting curve, pretending that the
seed was the first random seed that passed the public security criteria.

9.3. MANIPULATING SEEDS 121

9.3.4 Optimizing the attack

Assume that the curves vulnerable to Jerry’s secret attack are randomly distributed
over the curves satisfying the public security criteria. Then the success probability
that a seed leads to a suitable curve is the probability that a curve is vulnerable to the
secret attack times the probability that a curve satisfies the public security criteria.
Depending on which condition is easier to check Jerry runs many hash computations
to compute candidate b’s, checks them for the easier criterion and only checks the
surviving choices for the other criterion. The hash computations and security checks
for each seed are independent from other seeds; thus, this procedure can be parallelized
with an arbitrary number of parallel computing instances.

We generated a family of curves to show the power of this method and highlight the
computing power of hardware accelerators (such as GPUs or Xeon Phis). We began by
defining our own curve verification routine and implementing the corresponding secret
generation routine. The hash function we use is Keccak with 256-bit output instead
of SHA-1. The hash value is c = int(Keccak(s)), and the relation is simply b = c in
Fp. All choices are easily justified: Keccak is the winner of the SHA-3 competition
and much more secure than SHA-1; using a hash function with a long output removes
the weird order of hashed components that smells suspicious and similarly b = c is
as simple and unsuspicious as it can get. In reality, however, these choices greatly
benefit the attack: the GPUs efficiently search through many seeds in parallel, one
single computation of Keccak has a much easier data flow than in the method above,
and having b computed without any expensive number-theoretic computation (such
as square roots) means that the curve can be tested already on the GPUs and only
the fraction that satisfies the first test is passed on to the next stage. Of course, for
a real vulnerability we would have to add the cost of checking for that vulnerability,
but minimizing overhead is still useful.

Except for the differences stated above, we followed closely the setting of the NIST
P-curves. The target is to generate curves of the form y2 = x3 − 3x+ b over Fp, and
we consider 3 choices of p: the NIST P-224, P-256, and P-384 primes. (For P-384 we
switched to Keccak with 384-bit output.) As a placeholder “vulnerability” we define E
to be vulnerable if b starts with the hex-string BADA55EC. This fixes 8 hex digits, i.e.,
it simulates a 1-out-of-232 attack. In addition we require that the curves meet the
standard ECDLP criteria plus twist security and have both cofactors equal to 1.

9.3.5 Implementation

Our implementation uses NVIDIA’s CUDA framework for parallel programming on
GPUs. A high-end GPU today allows several thousand threads to run in parallel,
though at a frequency slightly lower than high-end CPUs. We let each thread start
with its own random seed. The threads then hash the seeds in parallel. After hashing,
each thread outputs the hash value if it starts with the hex-string BADA55EC. To
restart, each seed is simply increased by 1, so no new source of randomness is required.
Checking whether outputs from GPUs also satisfy the public security criteria is done
by running a Sage [Ste+15] script on CPUs. Since only 1 out of 232 curves has the
desired pattern, the CPU computation is totally hidden by GPU computation. Longer

122 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

import binascii
import simplesha3
hash = simplesha3.keccakc512 # SHA-3 winner with 256-bit output

p = 2^224 - 2^96 + 1 # standard NIST P-224 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def str2int(seed):
return Integer(seed.encode(’hex’),16)

A = p-3
S = ’3CC520E9434349DF680A8F4BCADDA648D693B2907B216EE55CB4853DB68F9165’
B = str2int(hash(binascii.unhexlify(S))) # verifiably random
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
A FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE
B BADA55ECFD9CA54C0738B8A6FB8CF4CCF84E916D83D6DA1B78B622351E11AB4E

Figure 9.4: A procedure to generate the new “verifiably random” BADA55-VR-
224 curve. Since the hash output is more than 256 bits, we implicitly reduce it
modulo p.

strings, corresponding to less likely vulnerabilities, make GPUs even more powerful
for our attack scheme.

In the end we found 3 “vulnerable” verifiably hashed curves: BADA55-VR-224,
BADA55-VR-256, and BADA55-VR-384, each corresponding to one of the three NIST
P-curves. See Figures 9.4, 9.5, and 9.6. Of course, as in Section 9.2, Jerry would use a
secret vulnerability rather than our artificial “vulnerability”, and would use the name
TrustedCurve-VR rather than BADA55-VR.

As an example, BADA55-VR-256 was found within 7 hours, using a cluster of
41 NVIDIA GTX780 GPUs (http://blog.cr.yp.to/20140602-saber.html). Each
GPU is able to carry out 170 million 256-bit-output Keccak hashes in a second. Most
of the instructions are bitwise logic instructions. On average each core performs 0.58
bitwise logic instructions per cycle while the theoretical maximum throughput is 0.83.
We have two explanations for the gap: first, each thread uses many registers, which
makes the number of active warps too small to fully hide the instruction latency;
second, there is not quite enough instruction-level parallelism to fully utilize the cores
in this GPU architecture. We also tested our implementation on K10 GPUs. Each
of them carries out only 61 million hashes per second. This is likely to be caused by
register spilling: the K10 GPUs have only 63 registers per thread instead of the 255
registers of the GTX780. Using a sufficient amount of computing power easily allows
Jerry to deal with secret vulnerabilities that have smaller probabilities of occurrence
than 2−32.

http://blog.cr.yp.to/20140602-saber.html

9.4. MANIPULATING NOTHING-UP-MY-SLEEVE NUMBERS 123

import binascii
import simplesha3
hash = simplesha3.keccakc512 # SHA-3 winner with 256-bit output

p = 2^256 - 2^224 + 2^192 + 2^96 - 1 # standard NIST P-256 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def str2int(seed):
return Integer(seed.encode(’hex’),16)

A = p-3
S = ’3ADCC48E36F1D1926701417F101A75F000118A739D4686E77278325A825AA3C6’
B = str2int(hash(binascii.unhexlify(S))) # verifiably random
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
A FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC
B BADA55ECD8BBEAD3ADD6C534F92197DEB47FCEB9BE7E0E702A8D1DD56B5D0B0C

Figure 9.5: A procedure to generate the new “verifiably random” BADA55-VR-
256 curve.

9.4 Manipulating nothing-up-my-sleeve numbers

There are some particularly pesky researchers who do not shut up even when provided
with a verification routine as in the previous section. These researchers might even
think of the powerful attack presented in the previous section.

In 1999, M. Scott complained about the choice of unexplained seeds for the NIST
curves [Sco99] and concluded “Do they want to be distrusted?”:

[...] Consider now the possibility that one in a million of
all curves have an exploitable structure that "they" know
about, but we don’t. Then "they" simply generate a million
random seeds until they find one that generates one of
"their" curves. Then they get us to use them. And remember
the standard paranoia assumptions apply - "they" have
computing power way beyond what we can muster. So maybe
that could be 1 billion.

A much simpler approach would generate more trust. Simply
select B as an integer formed from the maximum number of
digits of pi that provide a number B which is less that p.
Then keep incrementing B until the number of points on the
curve is prime. Such a curve will be accepted as "random"
as all would accept that the decimal digits of pi have no

124 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

import binascii
import simplesha3
hash = simplesha3.keccakc768 # SHA-3 winner with 384-bit output

p = 2^384 - 2^128 - 2^96 + 2^32 - 1 # standard NIST P-384 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def str2int(seed):
return Integer(seed.encode(’hex’),16)

A = p-3
S = ’CA9EBD338A9EE0E6862FD329062ABC06A793575A1C744F0EC24503A525F5D06E’
B = str2int(hash(binascii.unhexlify(S))) # verifiably random
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p FF
FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF
A FF
FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC
B BADA55EC3BE2AD1F9EEEA5881ECF95BBF3AC392526F01D4C
D13E684C63A17CC4D5F271642AD83899113817A61006413D

Figure 9.6: A procedure to generate the new “verifiably random” BADA55-VR-
384 curve.

unfortunate interaction with elliptic curves. We would all
accept that such a curve had not been specially "cooked".

So, sigh, why didn’t they do it that way? Do they want to
be distrusted?

In the same vein the German ECC Brainpool consortium expressed skepticism [Bra05,
Introduction] and suggested using natural constants in place of random seeds. They
coined the term “verifiably pseudorandom” for this method of generating seeds. Others
speak of “nothing-up-my-sleeves numbers”, a nice reference to magicians which we
will take as an inspiration to our endeavor to show how Jerry can play this system.
We comment that “nothing-up-my-sleeves numbers” also appear in other areas of
cryptography and can be manipulated in similar ways, but this chapter focuses on
manipulation of elliptic curves.

9.4.1 The Brainpool procedure

Brainpool requires that “curves shall be generated in a pseudo-random manner using
seeds that are generated in a systematic and comprehensive way”. Brainpool produces
each curve coefficient by hashing a seed extracted from the bits of e = exp(1). This
first curve cannot be expected to meet Brainpool’s security criteria, so Brainpool

9.4. MANIPULATING NOTHING-UP-MY-SLEEVE NUMBERS 125

counts systematically upwards from this initial seed until finding a curve that does
meet the security criteria. Brainpool uses a similar procedure to generate primes.

We have written a Sage implementation, emphasizing simplicity and clarity, of the
prime-generation and curve-generation procedures specified in the Brainpool stan-
dard [Bra05, Section 5]. For example, Figure 9.7 (designed to be shown to the pub-
lic) uses Brainpool’s procedure to generate a 224-bit curve. The output consists
of the following “verifiably pseudorandom” integers p, a, b defining an elliptic curve
y2 = x3 + ax+ b over Fp:

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

a = 0x2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

b = 0x68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

We have added underlines to point out an embarrassing collision of substrings, obvi-
ously quite different from what one expects in “pseudorandom” strings.

What happened here is that the Brainpool procedure generates each of a and
b as truncations of concatenations of various hash outputs (since the selected hash
function, SHA-1, produces only 160-bit outputs), and there was a collision in the
hash inputs. Specifically, Brainpool uses the same seed-increment function for three
purposes: searching for a suitable a; moving from a to b; and moving within the
concatenations. The first hash used in the concatenation for a was fed through this
increment function to obtain the second hash, and was fed through the same increment
function to obtain the first hash used in the concatenation for b, producing the overlap
visible above.

A reader who checks the Brainpool standard [Bra05] will find that the 224-bit
curve listed there does not have the same (a, b), and does not have this overlap. The
reason for this is that, astonishingly, the 224-bit standard Brainpool curve was not
actually produced by the standard Brainpool procedure. In fact, although the reader
will find overlaps in the standard 192-bit, 256-bit, 384-bit, and 512-bit Brainpool
curves, none of the standard Brainpool curves below 512 bits were produced by the
standard Brainpool procedure. In the case of the 160-bit, 224-bit, 320-bit, and 384-
bit Brainpool curves, one can immediately demonstrate this discrepancy by observing
that the gap listed between “seed A” and “seed B” in [Bra05, Section 11] is larger than
1, while the standard procedure always produces a gap of exactly 1.

A procedure that actually does generate the Brainpool curves appeared a few years
later in the Brainpool RFC [LM10] and is reimplemented in Figure 9.8. For readers
who do not enjoy playing a “spot the differences” game between Figures 9.7 and 9.8,
we explain how the procedures differ:

• The procedure in [LM10] assigns seeds to an (a∗ab∗b)∗ pattern. It tries consec-
utive seeds for a until finding that −3/a is a 4th power, then tries further seeds
for b until finding that b is not a square, then checks whether the resulting curve
meets Brainpool’s security criteria. If this fails, it goes back to trying further
seeds for a etc.

• The original procedure in [Bra05] assigns seeds to an (a∗ab)∗ pattern. It tries
consecutive seeds for a until finding that −3/a is a 4th power, then uses the

126 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

next seed for b, then checks whether b is a non-square and whether the curve
meets Brainpool’s security criteria. If this fails, it goes back to trying further
seeds for a etc.

Figure 9.9 shows our implementation of the procedure from [LM10] for all output
sizes, including both Brainpool prime generation and Brainpool curve generation.
The subroutine secure in this implementation also includes an “early abort” (using
“division polynomials”), improving performance by an order of magnitude without
changing the output; Figure 9.7 omits this speedup for simplicity. Our implemen-
tations also skip checking a few security criteria that have negligible probability of
failing, such as having large CM field discriminant (see Section 9.1); these criteria are
trivially verified after the fact.

We were surprised to discover the failure of the Brainpool standard procedure to
generate the Brainpool standard curves. We have not found this failure discussed, or
even mentioned, anywhere in the Brainpool RFCs or on the Brainpool web pages. We
have also not found any updates or errata to the Brainpool standard after [Bra05].
One would expect that having a “verifiably pseudorandom” curve not actually pro-
duced by the specified procedure would draw more public attention, unless the public
never actually tried verifying the curves, an interesting possibility for Jerry. We do not
explore this line of thought further: we make the worst-case assumption that future
curves will be verified by the public, using tools that Jerry is unable to corrupt.

The Brainpool standard also includes the following statement [Bra05, page 2]:
“It is envisioned to provide additional curves on a regular basis for users who wish
to change curve parameters regularly, cf. Annex H2 of [X9.62], paragraph ‘Elliptic
curve domain parameter cryptoperiod considerations’.” However, the procedure for
generating further “verifiably pseudorandom” curves is not discussed. One possibility
is to continue the original procedure past the first (a, b) pair, but this makes new
curves more and more expensive to verify. Another possibility is to replace e by a
different natural constant.

9.4.2 The BADA55-VPR-224 procedure

We now present a new and improved verifiably pseudorandom 224-bit curve, BADA55-
VPR-224. BADA55-VPR-224 uses the standard NIST P-224 prime, i.e., p = 2224 −
296 + 1.

To avoid Brainpool’s complications of concatenating hash outputs, we upgrade
from the deprecated SHA-1 hash function to the state-of-the-art maximum-security
SHA3-512 hash function. We also upgrade to requiring maximum twist security: i.e.,
both the cofactor and the twist cofactor are required to be 1.

Brainpool already generates seeds using exp(1) = e and generates primes using
arctan(1) = π/4, and MD5 already uses sin(1), so we use cos(1). We eliminate
Brainpool’s contrived, complicated10 search pattern for a: we simply count upwards,
trying every seed for a, until finding the first secure (a, b). The full 160-bit seed for a
is the 32-bit counter followed by cos(1). We complement this seed to obtain the seed
for b, ensuring maximal difference between the two seeds.

10As shown in Section 9.4.1, even Brainpool didn’t get these details right.

9.4. MANIPULATING NOTHING-UP-MY-SLEEVE NUMBERS 127

Figure 9.11 is a Sage script implementing the BADA55-VPR-224 generation pro-
cedure. This procedure is simpler and more natural than the Brainpool procedure in
Figure 9.8. Here is the resulting curve:

a = 0x7144BA12CE8A0C3BEFA053EDBADA555A42391AC64F052376E041C7D4AF23195E
BD8D83625321D452E8A0C3BB0A048A26115704E45DCEB346A9F4BD9741D14D49,

b = 0x5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276B
A3669AFF6FFC0F4C6AE4AE2E5D74C3C0AF97DCE17147688DDA89E734B56944A2.

9.4.3 How BADA55-VPR-224 was generated: exploring the
space of acceptable procedures

The surprising collision of Brainpool substrings had an easy explanation: two hashes
in the Brainpool procedure were visibly given the same input. The surprising appear-
ance of the 24-bit string BADA55 in a above has no such easy explanation. There are
128 hexadecimal digits in a, so one expects this substring to appear anywhere within
a with probability 123/224 ≈ 2−17.

The actual explanation is as follows. We decided in advance that we would force
BADA55 to appear somewhere in a as our artificial model of a “vulnerability”. We
then identified millions of natural-sounding “verifiably pseudorandom” procedures,
and enumerated (using a few hours on our cluster) approximately 220 of these pro-
cedures. The space of “verifiably pseudorandom” procedures has many dimensions
analyzed below, such as the choice of hash function, the length of the input seed,
the update function between seeds, and the initial constant for deriving the seed: i.e.,
each procedure is defined by a combination of hash function, seed length, etc. The ex-
act number of choices available in any particular dimension is relatively unimportant;
what is important is the exponential effect from combining many dimensions.

Since 220 is far above 217, it is unsurprising that our “vulnerability” appeared in
quite a few of these procedures. We selected one of those procedures and presented it
as Section 9.4.2 as an example of what could be shown to the public. See Figure 9.12
for another example11 of such a procedure, generating a BADA55-VPR2-224 curve,
starting from e instead of cos(1). We could have easily chosen a more restrictive
“vulnerability”.

The structure of this attack means that Jerry can use the same attack to target a
real vulnerability that has probability 2−17, or (with reasonable success chance) even
2−20, perhaps even reusing our database of curves. As in Section 9.2 and Section 9.3,
Jerry should use the name TrustedCurve-VPR rather than BADA55-VPR.

In this section we do not manipulate the choice of prime, the choice of curve
shape, the choice of cofactor criterion, etc. Taking advantage of this flexibility (see
Section 9.5) would increase the number of natural-sounding Brainpool-like procedures
above 230.

11Presenting two examples with the same string BADA55 gives the reader of this chapter some
assurance that we did, in fact, choose this string in advance. Otherwise we could have tried to fool
the reader as follows: generate a relatively small number of curves, search for an interesting-sounding
string in the results, write the previous sections of this chapter to target that string (rather than
BADA55), and pretend that we had chosen this string in advance.

128 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

Our experience is that Alice and Bob, when faced with a single procedure such
as Section 9.4.2 (or Section 9.4.1), find it extremely difficult to envision the entire
space of possible procedures (they typically see just a few dimensions of flexibility),
and find it inconceivable that the space could have size as large as 220, never mind
230. This is obviously a helpful phenomenon for Jerry.

9.4.4 Manipulating bit-extraction procedures

Consider the problem of extracting a fixed-length string of bits from (e.g.) the constant
e = exp(1) = 2.71828 . . . = (10.10110111 . . .)2. Here are several plausible options for
the starting bit position:

• Start with the most significant bit: i.e., take bits of e at bit positions 21, 20,
2−1, 2−2, etc.

• Start immediately after the binary point: i.e., take bits of e at bit positions 2−1,
2−2, etc. For some constants this is identical to the first option: consider, e.g.,
the first MD5 constant sin(1) = 0.84

• Start with the most significant nibble: i.e., take bits of e at bit positions 23, 22,
21, 20, 2−1, 2−2, etc.

• Start with the most significant byte: i.e., take bits of e at bit positions 27, 26,
25, etc.

• Start with the byte at position 0. In the case of e this is the same as the fourth
option. In the case of sin(1) this means prepending 8 zero bits to the fourth
option.

These options can be viewed as using different maps from real numbers x to real
numbers y with 0 ≤ y < 1: the first map takes x to |x|/2blog2 |x|c, the second map
takes x to x − bxc, the third map takes x to |x|/16blog16 |x|c, etc. Brainpool used
the third of these options, describing it as using “the hexadecimal representation” of
e. Jerry can use similarly brief descriptions for any of the options without drawing
the public’s attention to the existence of other options. We implemented the first,
second, and fourth options; for an average constant this produced slightly more than
2 distinct possibilities for real numbers y.

Jerry can easily get away with extracting a k-bit integer from y by truncation
(i.e.,

⌊
2ky
⌋
) or by rounding (i.e.,

⌈
2ky
⌋
). Jerry can defend truncation (which has

fundamentally lower accuracy) as simpler, and can defend rounding as being quite
standard in mathematics and the physical sciences; but we see no reason to believe
that Jerry would be challenged in the first place. We implemented both options,
gaining a further factor of 1.5.

Actually, Brainpool uses the bit position indicated above only for the low-security
160-bit Brainpool curve (which Jerry can disregard as already being a non-problem
for Eve). As shown in Figure 9.9, Brainpool shifts to subsequent bits of e for the 192-
bit curve, then to further bits for the 224-bit curve, etc. Brainpool uses 160 bits for
each curve (see below), so the seed for the 256-bit curve (which Jerry can reasonably

9.4. MANIPULATING NOTHING-UP-MY-SLEEVE NUMBERS 129

guess would be the most commonly used curve) is shifted by 480 bits. This number
480 depends on how many lower security levels are allocated (an obvious target of
manipulation), and on exactly how many bits are allocated to those seeds. A further
option, pointed out in [Mer14] by Merkle (Brainpool RFC co-author), is to reverse
the order of curve sizes; the number 480 then depends on how many higher security
levels are allocated. Yet another option is to put curve sizes in claimed order of usage.
We did not implement any of the options described in this paragraph.

9.4.5 Manipulating choices of hash functions
The latest (July 2013) revision of the NIST ECDSA standard [NIS13, Section 6.1.1]
specifically requires that “the security strength of a hash function used [for curve
generation] shall meet or exceed the security strength associated with the bit length”.
The original NIST curves are exempted from this rule by [NIS13, footnote 2], but this
rule prohibits SHA-1 for (e.g.) new 224-bit curves. On the other hand, a more recent
Brainpool-related curve-selection document [Mer14] states that “For a PRNG, SHA-1
was (and still is) sufficiently secure.”

Jerry has at least 10 plausible options for standard hash functions used to generate
(e.g.) 256-bit curves:

• SHA-1. “We follow the Brainpool standard. What matters is preimage resis-
tance, and SHA-1 still provides more than 2128 preimage resistance.”

• SHA-256. “The trusted, widely deployed SHA-256 standard.”

• SHA-384. “SHA-2 at the security level required to handle both sizes of Suite B
curves.”

• SHA-512. “The maximum-security SHA-512 standard.”

• SHA-512/256. “NIST’s standard wide-pipe hash function.”

• SHA3-256. “The state-of-the-art SHA-3 standard at a 2128 security level.”

• SHA3-384. “The state-of-the-art SHA-3 standard, at the security level required
to handle both sizes of Suite B curves.”

• SHA3-512. “The maximum-security state-of-the-art SHA3-512 standard.”

• SHAKE128. “The state-of-the-art SHA-3 standard at a 2128 security level, pro-
viding flexible output sizes.”

• SHAKE256. “The state-of-the-art SHA-3 standard at a 2256 security level, pro-
viding flexible output sizes.”

There are also several non-NIST hash functions with longer track records than SHA-3.
Any of RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320, Tiger, Tiger/128,
Tiger/160, and Whirlpool would have been easily justifiable as a choice of hash func-
tion before 2006. MD5 and all versions of Haval would have been similarly justifiable
before 2004.

130 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

Since we targeted a 224-bit curve we had even more standard NIST hash-function
options. For simplicity we implemented just 10 hash-function options, namely the
following variants of Keccak, the SHA-3 competition winner: Keccak-224, Keccak-
256, Keccak-384, Keccak-512, “default” Keccak (“capacity” c = 576, 128 output bytes),
Keccak-128 (capacity c = 256, 168 output bytes), SHA3-224 (which has different input
padding from Keccak-224, changing the output), SHA3-256, SHA3-384, and SHA3-
512. All of these Keccak/SHA-3 choices can be implemented efficiently with a single
code base and variable input parameters.

9.4.6 Manipulating counter sizes

The simplest way to obtain a 160-bit “verifiably pseudorandom” output with SHA-1
is to hash the empty string. Curve generation needs many more outputs (since most
curves do not pass the public security criteria), but the simplest way to obtain 2β

“verifiably pseudorandom” outputs is to hash all β-bit inputs.
Hash-function implementations are often limited to byte-aligned inputs, so it is

natural to restrict β to a multiple of 8. If each output has chance 2−15 of producing an
acceptable curve (see Section 9.1) then β = 16 finds an acceptable curve with chance
nearly 90% (“this is retroactively justified by our successfully finding a curve, so there
was no need for us to consider backup plans”); β = 24 fails with negligible probability
(“we chose the smallest β for which the probability of failure was negligible”); β = 32
is easily justified by reference to 32-bit machines; β = 64 is easily justified by reference
to 64-bit machines.

Obviously Brainpool takes a more complicated approach, using bits of some nat-
ural constant to further “randomize” its outputs. The standard way to randomize a
hash is to concatenate the randomness (e.g., bits of e) with the input being hashed
(the counter). Brainpool instead adds the randomness to the input being hashed. The
Brainpool choice is not secure as a general-purpose randomized hash, although these
security problems are of no relevance to curve generation. There is no evidence of
public objections to Brainpool’s use of addition here (and to the overall complication
introduced by the extra randomization), so there is also no reason to think that the
public would object to the more standard concatenation approach.

Overall there are 13 plausible possibilities here: the 4 choices of β above, with the
counter on the left of the randomness; the 4 choices of β above, with the counter on
the right of the randomness; the counter being added to the randomness; and 4 further
possibilities in which the randomness is partitioned into an initial value for a counter
(for the top bits) and the remaining seed (for the bottom bits). We implemented the
first 9 of these 13 possibilities.

9.4.7 Manipulating hash input sizes

ANSI X9.62 requires ≥160 input bits for its hash input. One way for Jerry to advertise
a long input is that it allows many people to randomly generate curves with a low
risk of collision. For example, Jerry can advertise

• a 160-bit input as allowing 264 curves with only a 2−32 risk of collision;

9.4. MANIPULATING NOTHING-UP-MY-SLEEVE NUMBERS 131

• a 256-bit input as allowing 264 curves with only a 2−128 risk of collision; or

• a 384-bit input as allowing 2128 curves with only a 2−128 risk of collision.

All of these numbers sound perfectly natural. Of course, what Jerry is actually
producing is a single standard for many people to use, so multiple-curve collision
probabilities are of no relevance, but (in the unlikely event of being questioned) Jerry
can simply say that the input length was chosen for “compatibility” with having users
generate their own curves.

Jerry can advertise longer input lengths as providing “curve coverage”. A 512-bit
input will cover a large fraction of curves, even for primes as large as 512 bits. A 1024-
bit input is practically guaranteed to cover all curves, and to produce probabilities
indistinguishable from uniform. Jerry can also advertise, as input length, the “natural
input block length of the hash function”.

We implemented all 6 possibilities listed above. We gained a further factor of 2 by
storing the seed (and counter) in big-endian format (“standard network byte order”)
or little-endian format (“standard CPU byte order”).

9.4.8 Manipulating the (a, b) hash pattern

It should be obvious from Section 9.4.1 that there are many degrees of freedom in the
details of how a and b are generated: how to distribute seeds between a and b; whether
to require −3/a to be a 4th power in Fp; whether to require b to be a non-square in
Fp; whether to concatenate hash outputs from left to right or right to left; exactly
how many bits to truncate hash outputs to (Brainpool uses one bit fewer than the
prime; Jerry can argue for the same length as the prime “for coverage”, or more bits
“for indistinguishability”); whether to truncate to rightmost bits (as in Brainpool) or
leftmost bits (as in various NIST requirements; see [NIS13]); et al.

For simplicity we eliminated the concatenation and truncation, always using a hash
function long enough for the target 224-bit prime. We also eliminated the options
regarding squares etc. We implemented a total of just 8 choices here. These choices
vary in (1) whether to allocate seeds primarily to a or primarily to b and (2) how to
obtain the alternate seed (e.g., the seed for a) from the primary seed (e.g., the seed
for b): plausible options include complement, rotate 1 byte left, rotate 1 byte right,
and four standard versions of 1-bit rotations.

9.4.9 Manipulating natural constants

As noted at the beginning of this chapter, the public has accepted dozens of “natu-
ral” constants in various cryptographic functions, and sometimes reciprocals of those
constants, without complaint. Our implementation started with just 17 natural con-
stants: π, e, Euler gamma,

√
2,
√

3,
√

5,
√

7, log(2), (1 +
√

5)/2, ζ(3), ζ(5), sin(1),
sin(2), cos(1), cos(2), tan(1), and tan(2). We gained an extra factor of almost 2 by
including reciprocals.

Jerry could be creative and use previously unused numbers such as numbers de-
rived from some historical document or newspaper, personal information of, e.g.,
arbitrary celebrities in an arbitrary order, arbitrary collections of natural or physical

132 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

constants and even a combination of several sources. For example, NewDES [Wik15a]
derives its S-Box from the United States Declaration of Independence. If the public
accepts numbers with such flimsy justifications as “nothing-up-my-sleeves numbers”
then Jerry obviously has as much flexibility as in Section 9.3. We make the worst-case
assumption that the public is not quite as easily fooled, and similarly that the public
would not accept 703e(

8√30+4π)/9 sin(3√16) as a “nothing-up-my-sleeve number”.

9.4.10 Implementation

Any combination of the above manipulations defines a “systematic” curve-generation
procedure. This procedure outputs the first curve parameters (using the specified
update function) that result in a “secure” curve according to the public security tests.
However, performing all public security tests for each set of parameters considered by
each procedure is very costly. Instead, we split the attack into two steps:

1. For a given procedure fi we iterate over the seeds si,k using the specific update
function of fi. We check each parameter candidate from seed si,k for our secret
BADA55 vulnerability. After a certain number of update steps the probability
that we passed valid, secure parameters is very high; thus, we discard the pro-
cedure and start over with another one. If we find a candidate exhibiting the
vulnerability, we perform the public security tests on this particular candidate.
If the BADA55 candidate passes, we proceed to step 2.

2. We perform the whole public procedure fi starting with seed si,0 and check
whether there is any valid parameter set passing the public security checks
already before the BADA55 parameters are reached. If there is such an earlier
parameter set, we return to step 1 with the next procedure fi+1.

The largest workload in our attack scenario is step 2, the re-checking for earlier
safe curve parameters before BADA55 candidates. The public security tests are not
well suited for GPU parallelization; the first step of the attack procedure is relatively
cheap and a GPU parallelization of this step does not have a remarkable impact on
the overall runtime. Therefore, we implemented the whole attack only for the CPUs
of the Saber cluster and left the GPUs idle.

We initially chose 8000 as the limit for the update counter to have a very good
chance that the first secure twist-secure curve starting from the seed is the curve with
our vulnerability. For example, BADA55-VPR-224 was found with counter just 184,
and there was only a tiny risk of a smaller counter producing a secure twist-secure
curve (which we checked later, in the second step). In total ≈233 curves were covered
by this limited computation; more than 218 were secure and twist-secure. We then
pushed the 8000 limit higher, performing more computation and finding more curves.
This gradually increased the risk of the counter not being minimal, something that
we would have had to address by the techniques of Section 9.5; but this issue still did
not affect, e.g., BADA55-VPR2-224, which was found with counter 28025.

9.5. MANIPULATING MINIMALITY 133

9.5 Manipulating minimality

Instead of supporting “verifiably pseudorandom” curves as in Section 9.4, some re-
searchers have advocated choosing “verifiably deterministic” curves.

Both approaches involve specifying a “systematic” procedure that outputs a curve.
The difference is that in a “verifiably pseudorandom” curve the curve coefficient is the
output of a hash function for the first hash input that meets specified curve criteria,
while a “verifiably deterministic” curve uses the first curve coefficient that meets
specified curve criteria. Typically the curve uses a “verifiably deterministic” prime,
which is the first prime that meets specified prime criteria.

Eliminating the hash function and hash input makes life harder for Jerry: it
eliminates the main techniques that we used in previous sections to manipulate curve
choices. However, as we explain in detail in this section, Jerry still has many degrees of
freedom. Jerry can manipulate the concept of “first curve coefficient”, can manipulate
the concept of “first prime”, can manipulate the curve criteria, and can manipulate
the prime criteria, with public justifications claiming that the selected criteria provide
convenience, ease of implementation, speed of implementation, and security.

In Section 9.4 we did not manipulate the choice of prime: we obtained a satis-
factory level of flexibility in other ways. In this section, the choice of prime is an
important component of Jerry’s flexibility. It should be clear to the reader that the
techniques in this section to manipulate the prime, the curve criteria, etc. can be
backported to the setting of Section 9.4, adding to the flexibility there.

We briefly review a recent proposal that fits into this category and then proceed
to work out how much flexibility is left for Jerry.

9.5.1 NUMS curves

In early 2014, Bos, Costello, Longa, and Naehrig [BCL+15] proposed 13 Weierstrass
and 13 Edwards curves, spread over 3 different security levels. Each curve was gen-
erated following a deterministic procedure (similar to the procedure proposed in
[BHK+13]). Given that there are up to 10 different procedures per security level
we cannot review all of them here but [BCL+15] is a treasure trove of arguments to
justify different prime and curve properties and we will use this to our benefit below.

The same authors together with Black proposed a set of 6 of these curves as an
Internet-Draft [BBC+14] referring to these curves as “Nothing Up My Sleeve (NUMS)
Curves”. Note that this does not match the common use of “nothing up my sleeves”;
see, e.g., the Wikipedia page [Wik15b]. These curves are claimed in [LC14] to have
“independently-verifiable provenance”, as if they were not subject to any possible
manipulation; and are claimed in [BBC+15] to be selected “without any hidden pa-
rameters, reliance on randomness or any other processes offering opportunities for
manipulation of the resulting curves”. What we analyze in this section is the extent
to which Jerry can manipulate the resulting curves.

134 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

9.5.2 Choice of security level

Jerry may propose curves aiming for multiple security levels. To quote the Brainpool-
curves RFC [LM10] “The level of security provided by symmetric ciphers and hash
functions used in conjunction with the elliptic curve domain parameters specified in
this RFC should roughly match or exceed the level provided by the domain parame-
ters.” Table 1 in that document justifies security levels of 80, 96, 112, 128, 160, 192,
and 256 bits. We consider the highest five to be easy sells. For the smaller ones Jerry
will need to be more creative and, e.g., evoke the high cost of energy for small devices.

9.5.3 Choice of prime

There are several parts to choosing a prime once the security level is fixed.

Choice of prime size

For a fixed security level α it should take about 2α operations to break the DLP. The
definition of “operation” leaves some flexibility. The choices for the bit length r of the
prime are:

• Exactly 2α, see e.g., [BCL+15].

• Exactly 2α− 1, see e.g., [BCL+15].

• Exactly 2α− 2, see e.g., [BCL+15].

• Exactly 2α+ 1 to make up for the loss of
√
π/4 in the Pollard-rho complexity.

• Exactly 2α+ 2 to really make up for the loss of
√
π/4 in the Pollard-rho com-

plexity.
...

• Exactly 2α+β to make up for the loss through precomputations for multi-target
attacks.

• Exactly 2α− 3 to make arithmetic easier and because each elliptic-curve oper-
ation takes at least 3 bit operations.

• Exactly 2α− 4 to make arithmetic easier and because each elliptic-curve oper-
ation takes at least 4 bit operations.
...

• Exactly 2α− γ to make arithmetic easier and because each elliptic-curve oper-
ation takes at least 2γ/2 bit operations.

These statements provide generic justifications for 8 options (actually even more, but
we take a power of 2 to simplify). In the next two steps we show how to select
different primes for each of these requirements. If the resulting p has additional
beneficial properties these generic arguments might not be necessary, but they might

9.5. MANIPULATING MINIMALITY 135

be required if a competing (and by some measure superior) proposal can be excluded
on the basis of not following the same selection criterion. If Jerry wants to highlight
such benefits in his prime choice he may point to fast reduction or fast multiplication
in a particular redundant representation with optimal limb size.

Choice of prime shape

The choices for the prime shape are:

• A random prime. This might seem somewhat hard to justify outside the scope
of the previous section because arithmetic in Fp becomes slower, but mem-
bers of the ECC Brainpool working group published several helpful arguments
[LMS+14]. The most useful one is that random primes mean that the blinding
factor in randomizing scalars against differential side-channel attacks can be
chosen smaller.

• A pseudo-Mersenne prime, i.e. a prime of the shape 2r ± c. The most common
choice is to take c to be the smallest integer for a given r which leads to a prime
because this makes reduction modulo the prime faster. (To reduce modulo
2r± c, divide by 2r and add ∓c times the dividend to the remainder.) See, e.g.,
[BCL+15]. Once r is fixed there are two choices for the two signs.

• A Solinas prime, i.e. a prime of the form 2r ± 2v ± 1 as chosen for the Suite
B curves [NSA05]. Also for these primes speed of modular reduction is the
common argument. The difference r − v is commonly chosen to be a multiple
of the word size. Jerry can easily argue for multiples of 32 and 64. We skip this
option in our count because it is partially subsumed in the following one.

• A “Montgomery-friendly” prime, i.e. a prime of the form 2r−v(2v−c)±1. These
curves speed up reductions if elements in Fp are represented in Montgomery
representation, r − v is a multiple of the word size and c is less than the word
size. Common word sizes are 32 and 64, giving two choices here. We ignore
the flexibility of the ± because that determines p modulo 4, which is considered
separately.

There are of course infinitely many random primes; in order to keep the number of
options reasonable we take 4 as an approximation of how many prime shapes can be
easily justified, making this a total of 8 options.

Choice of prime congruence

Jerry can get an additional bit of freedom by choosing whether to require p ≡ 1
(mod 4) or to require p ≡ 3 (mod 4). A common justification for the latter is that
computations of square roots are particularly fast which could be useful for compres-
sion of points, see, e.g., [Bra05; BCL+15]. (In fact one can also compute square roots
efficiently for p ≡ 1 (mod 4), in particular for p ≡ 5 (mod 8), but Jerry does not need
to admit this.) To instead justify p ≡ 1 (mod 4), Jerry can point to various benefits
of having

√
−1 in the field: for example, twisted Edwards curves are fastest when

a = −1, but completeness for a = −1 requires p ≡ 1 (mod 4).

136 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

If Jerry chooses twisted Hessian curves he can justify restricting to p ≡ 1 (mod 3)
to obtain complete curve arithmetic.

9.5.4 Choice of ordering of field elements
The following curve shapes each have one free parameter. It is easy to justify choosing
this parameter as the smallest parameter under some side conditions. Here smallest
can be chosen to mean smallest in N or as the smallest power of some fixed generator
g of F∗p. The second option is used in, e.g., a recent ANSSI curve-selection document
[FPR+15, Section 2.6.2]: “we define . . . g as the smallest generator of the multiplica-
tive group . . . We then iterate over . . . b = gn for n = 1, . . . , until a suitable curve is
found.” Each choice below can be filled with these two options.

9.5.5 Choice of curve shape and cofactor requirement
Jerry can justify the following curve shapes:

1. Weierstrass curves, the most general curve shape. The usual choice is y2 =
x3 − 3x+ b, leaving one parameter b free. For simplicity we do not discuss the
possibility of choosing values other than −3.

2. Edwards curves, the speed leader in fixed-base scalar multiplication offering
complete addition laws. The usual choices are ax2+y2 = 1+dx2y2, for a ∈ {±1},
leaving one parameter d free. The group order of an Edwards curve is divisible
by 4.

3. Montgomery curves, the speed leader for variable-base scalar multiplication and
the simplest to implement correctly. The usual choices are y2 = x3 + Ax2 +
x, leaving one parameter A free. The group order of a Montgomery curve is
divisible by 4.

4. Hessian curves, a cubic curve shape with complete addition laws (for twisted
Hessian). The usual choices are ax3+y3+1 = dxy, where a is a small non-cube,
leaving one parameter d free. The group order of a Hessian curve is divisible
by 3, making twisted Hessian curves the curves with the smallest cofactor while
having complete addition.

The following choices depend on the chosen curve shape, hence we consider them
separately.

Weierstrass curves

Most standards expect the point format to be (x, y) on Weierstrass curves. Even
when computations want to use the faster Edwards and Hessian formulas, Jerry can
easily justify specifying the curve in Weierstrass form. This also ensures backwards
compatibility with existing implementations that can only use the Weierstrass form.

The following are examples of justifiable choices for the cofactor h of the curve:

• Require cofactor exactly 1, as in Suite B and Brainpool.

9.5. MANIPULATING MINIMALITY 137

• Require cofactor exactly 2, the minimum cofactor that allows the techniques
of [BHK+13] to transmit curve points as uniform random binary strings for
censorship circumvention.

• Require cofactor exactly 3, the minimum cofactor that allows Hessian arith-
metic.

• Require cofactor exactly 4, the minimum cofactor that allows Edwards arith-
metic.

• Require cofactor exactly 12, the minimum cofactor that allows both Hessian
arithmetic and Edwards arithmetic.

• Take the first curve having cofactor below 2α/8. This cofactor limit is standard-
ized in [Cer10] and [NIS13]. (This cofactor will almost always be larger than
12.)

• Take the first curve having cofactor below 2α/8 and a multiple of 3.

• Take the first curve having cofactor below 2α/8 and a multiple of 4.

• Take the first curve having cofactor below 2α/8 and a multiple of 12.

• Replace “cofactor below 2α/8” with the SafeCurves requirement of a largest
prime factor above 2200.

On average these choices produce slightly more than 8 options; the last few options
sometimes coincide.

The curve is defined as y2 = x3 − 3x + b where b is minimal under the chosen
criterion. Changing from positive b to negative b changes from a curve to its twist
if p ≡ 3 (mod 4), and (as illustrated by additive transfers) this change does not
necessarily preserve security. However, this option makes only a small difference in
our final total, so for simplicity we skip it.

Hessian curves

A curve given in Hessian form (and chosen minimal there) can be required to have
minimal cofactor, minimal cofactor while being compatible with Edwards form, cofac-
tor smaller than 2α/8, or largest prime factor larger than 2u. This leads to 8 options
considering positive and negative values of d. Of course other restrictions on the
cofactor are possible.

Edwards curves

For Edwards curves we need to split up the consideration further:

138 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

Edwards curves with p ≡ 3 (mod 4)

Curves with a = −1 are attractive for speed but are not complete in this case.
Nevertheless [BCL+15] argues for this option, so we have additionally the choice
between aiming for a complete or an a = −1 curve.

A curve given in (twisted) Edwards form (and chosen minimal there) can be re-
quired to have minimal cofactor, minimal cofactor while being compatible with Hes-
sian form, cofactor smaller than 2α/8, or largest prime factor larger than 2u (and the
latter in combination with Hessian if desired). This leads to at least 8 choices consid-
ering completeness; for minimal cofactors [BCL+15] shows that minimal choices for
positive and negative values of d are not independent. To stay on the safe side we
count these as 8 options only.

Edwards curves with p ≡ 1 (mod 4)

The curves x2 + y2 = 1 + dx2y2 and −x2 + y2 = 1 − dx2y2 are isomorphic because
−1 is a square, hence taking the smallest positive value for d finds the same curve as
taking the smallest negative value for the other sign of a. Jerry can however insist
or not insist on completeness. Justifying non-completeness if the smallest option is
complete however seems a hard sell.

Because 2p+2 ≡ 4 (mod 8) one of the curve and its twist will have order divisible
by 8 while the other one has remainder 4 modulo 8. Jerry can require cofactor 4, as
the minimal cofactor, or cofactor 8 if he chooses the twist with minimal cofactor as
well and is concerned that protocols will only multiply by the cofactor of the curve
rather than by that of the twist. The other options are the same as above. Again, to
stay on the safe side, we count this as 8 options only.

Montgomery curves

There is a significant overlap between choosing the smallest Edwards curve and the
smallest Montgomery curve. In order to ease counting and avoid overcounting we
omit further Montgomery options.

Summary of curve choice

We have shown that Jerry can argue for 8 + 8 + 8 = 24 options.

9.5.6 Choice of twist security

We make the worst-case assumption, as discussed in Section 9.1, that future standards
will be required to include twist security. However, Jerry can play twist security to
his advantage in changing the details of the twist-security requirements. Here are
three obvious choices:

• Choose the cofactor of the twist as small as possible. Justification: This offers
maximal protection.

9.5. MANIPULATING MINIMALITY 139

• Choose the cofactor of the twist to be secure under the SEC recommendation,
i.e. h′ < 2α/8. Justification: This is considered secure enough for the main
curve, so it is certainly enough for the twist.

• Choose the curve such that the curve passes the SafeCurves requirement of
2100 security against twist attacks. Justification: Attacks on the twist cannot
use Pollard rho but need to do a brute-force search in the subgroups. The
SafeCurves requirement captures the actual hardness of the attack.

Jerry can easily justify changes to the bound of 2100 by pointing to a higher secu-
rity level or reducing it because the computations in the brute-force part are more
expensive. We do not use this flexibility in the counting.

9.5.7 Choice of global vs. local curves

Jerry can take the first prime (satisfying some criteria), and then, for that prime, take
the first curve coefficients (satisfying some criteria). Alternatively, Jerry can take the
first possible curve coefficients, and then, for those curve coefficients, take the first
prime. These two options are practically guaranteed to produce different curves. For
example, in the Weierstrass case, Jerry can take the curve y2 = x3− 3x+ 1, and then
search for the first prime p so that this curve over Fp satisfies the requirements on
cofactor and twist security. If Jerry instead takes y2 = x3 − 3x + g as in [FPR+15,
Section 2.6.2], p must also meet the requirement that g be primitive in Fp.

In mathematical terminology, the second option specifies a curve over a “global
field” such as the rationals Q, and then reduces the curve modulo suitable primes.
This approach is particularly attractive when presented as a family of curves, all
derived from the same global curve.

9.5.8 More choices

Brainpool [Bra05] requires that the number of points on the curve is less than p but
also presents an argument for the opposite choice:

To avoid overruns in implementations we require that #E(GF (p)) < p.
In connection with digital signature schemes some authors propose to use
q > p for security reasons, but the attacks described e.g. in [BRS] appear
infeasible in a thoroughly designed PKI.

So Jerry can choose to insist on p < |E(Fp)| or on p > |E(Fp)|.

9.5.9 Overall count

We have shown that Jerry can easily argue for 4 (security level) ·8 (prime size) ·8
(prime shape) ·2 (congruence) ·2 (definition of first) ·24 (curve choice) ·3 (twist con-
ditions) ·2 (global/local) ·2 (p ≶ |E(Fp)|) = 294912 choices.

140 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

9.5.10 Example

The artificial “vulnerability” that we have used throughout this chapter, namely
BADA55 appearing in a curve coefficient, is obviously incompatible with taking that
coefficient to be minimal in the usual ordering. We would be happy to accept the
following type of challenge as an alternative: a third party provides us with a nonstruc-
tured prime number n > 250; we find a curve so that the hexadecimal representation
of ` modulo n ends in BAD, a condition having probability 2−12.

9.6 Manipulating security criteria

An unfortunate recent trend is to introduce top performance as a selection require-
ment. This means that Alice and Bob accept only the fastest curve, as demonstrated
by benchmarks across a range of platforms. The most widely known example of this
approach is Bernstein’s Curve25519, the curve y2 = x3 + 486662x2 + x modulo the
particularly efficient prime 2255 − 19, which over the past ten years has set speed
records for conservative ECC on space-constrained ASICs, Xilinx FPGAs, 8-bit AVR
microcontrollers, 16-bit MSP430X microcontrollers, 32-bit ARM Cortex-M0 micro-
controllers, larger 32-bit ARM smartphone processors, the Cell processor, NVIDIA
and AMD GPUs, and several generations of 32-bit and 64-bit Intel and AMD CPUs,
using implementations from 23 authors. See [Ber06; GT07; CS09; BDL+12; BS12;
LM13; MC14; SG14; Cho15; DHH+15; HSS+15].

The annoyance for Jerry in this scenario is that, in order to make a case for his
curve, he needs to present implementions of the curve arithmetic on a variety of
devices, showing that his curve is fastest across platforms. Jerry could try to falsify
his speed reports, but it is increasingly common for the public to demand verifiable
benchmarks using open-source software.

Jerry can hope that some platforms will favor one curve while other platforms
will favor another curve; Jerry can then use arguments for a “reasonable” weighting of
platforms as a mechanism to choose one curve or the other. However, it seems difficult
to outperform Curve25519 even on one platform. The prime 2255 − 19 is particularly
efficient, as is the Montgomery curve shape y2 = x3 + 486662x2 + x. The same curve
is also expressible as a complete Edwards curve, allowing fast additions without the
overhead of checking for exceptional cases. Twist security removes the overhead of
checking for invalid inputs. Replacing 486662 with a larger curve coefficient produces
identical performance on many platforms but loses a measurable amount of perfor-
mance on some platforms, violating the “top performance” requirement.

In Section 9.5, Jerry was free to, e.g., claim that p ≡ 3 (mod 4) provides “simple
square-root computations” and thus replace 2255 − 19 with 2255 − 765; claim that
“compatibility” requires curves of the form y2 = x3 − 3x+ b; etc. The new difficulty
in this section is that Jerry is facing “top performance” fanatics who reject 2255− 765
as not providing top performance; who reject y2 = x3 − 3x + b as not providing top
performance; etc.

Fortunately, Jerry still has some flexibility in defining what security requirements
to take into account. Taking “the fastest curve” actually means taking the fastest
curve meeting specified security requirements, and the list of security requirements is

9.7. AFTERWORD: REMOVING THE HAT 141

a target of manipulation.
Most importantly, Jerry can argue for any size of `. However, if there is a faster

curve with a larger ` satisfying the same criteria, then Jerry’s curve will be rejected.
Furthermore, if Jerry’s curve is only marginally larger than a significantly faster curve,
then Jerry will have to argue that a tiny difference in security levels (e.g., one curve
broken with 0.7× or 0.5× as much effort as another) is meaningful, or else the top-
performance fanatics will insist on the significantly faster curve.

The choice of prime has the biggest impact on speed and closely rules the size of `.
For pseudo-Mersenne primes larger than 2224 the only possibly competitive ones are:
2226−5, 2228 +3, 2233−3, 2235−15, 2243−9, 2251−9, 2255−19, 2263 +9, 2266−3, 2273 +
5, 2285 − 9, 2291 − 19, 2292 + 13, 2295 + 9, 2301 + 27, 2308 + 27, 2310 + 15, 2317 + 9, 2319 +
9, 2320 + 27, 2321 − 9, 2327 + 9, 2328 + 15, 2336 − 3, 2341 + 5, 2342 + 15, 2359 + 23, 2369 −
25, 2379−19, 2390+3, 2395+29, 2401−31, 2409+29, 2414−17, 2438+25, 2444−17, 2452−
3, 2456+21, 2465+29, 2468−17, 2488−17, 2489−21, 2492+21, 2495−31, 2508+15, 2521−1.
Preliminary implementation work shows that the Mersenne prime 2521 − 1 has such
efficient reduction that it outperforms, e.g., the prime 2512 − 569 from [BCL+15];
perhaps it even outperforms primes below 2500. We would expect implementation
work to also show, e.g., that 2319 + 9 is significantly faster than 2320 + 27, and Jerry
will have a hard time arguing for 2320 + 27 on security grounds. Considering other
classes of primes, such as Montgomery-friendly primes, might identify as many as 100
possibly competitive primes, but it is safe to estimate that fewer than 80 of these
primes will satisfy the top-performance fanatics, and further implementation work is
likely to reduce the list even more. Note that in this section, unlike other sections,
we take a count that is optimistic for Jerry.

Beyond the choice of prime, Jerry can use different choices of security criteria.
However, most of the flexibility in Section 9.5 consists of speed claims, compatibility
claims, etc., few of which can be sold as security criteria. Jerry can use the different
twist conditions, the choice whether p < |E(Fp)| or p > |E(Fp)|, and possibly two
choices of cofactor requirements. Jerry can also choose to require completeness as
a security criterion, but this does not affect curve choice in this section: the com-
plete formulas for twisted Hessian and Edwards curves are faster than the incomplete
formulas for Weierstrass curves. The bottom line is that multiplying fewer than 80
primes by 12 choices of security criteria produces fewer than 960 curves. The main
difficulty in pinpointing an exact number is carrying out detailed implementation
work for each prime; we leave this to future work.

9.7 Afterword: removing the hat

This chapter, outside this section, systematically adopts the attacker’s perspective.
In this section, to avoid any chance of confusion, we drop the attacker’s perspective
and address a few questions that we have been asked.

First, in case this is not obvious to the reader, we do not actually endorse the
attacker’s perspective. Our goal in analyzing the security of systems is to prevent
attacks.

Second, this chapter analyzes the possibilities of backdooring curves under various

142 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

conditions. We are not making any statements about whether such an attack has
actually been carried out.

Third, we have been asked how to eliminate Jerry’s flexibility in choosing curves.
We are not aware of any proposal that reduces the flexibility to just one curve.

9.8 Scripts
This section presents some Sage scripts used in the previous sections.

9.8. SCRIPTS 143

import hashlib # for a PRNG, SHA-1 is standard and sufficiently secure
def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()
seedbytes = 20 # 160-bit size for seed, determined by SHA-1 output size

224-bit prime p produced by very similar procedure, shown in separate file
p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed): # add 1 to seed, viewed as integer
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes) # enough bits for all curve sizes
S = nums[2*seedbytes:3*seedbytes] # previous bytes are used for 160 and 192
while True:

A = fullhash(S)
if not (k(A)*x^4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

Figure 9.7: An implementation of the Brainpool standard procedure [Bra05,
Section 5] to generate a 224-bit curve.

144 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

import hashlib # for a PRNG, SHA-1 is standard and sufficiently secure
def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()
seedbytes = 20 # 160-bit size for seed, determined by SHA-1 output size

224-bit prime p produced by very similar procedure, shown in separate file
p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed): # add 1 to seed, viewed as integer
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes) # enough bits for all curve sizes
S = nums[2*seedbytes:3*seedbytes] # previous bytes are used for 160 and 192
while True:

A = fullhash(S)
if not (k(A)*x^4+3).roots(): S = update(S); continue
while True:

S = update(S)
B = fullhash(S)
if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue
print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Figure 9.8: An implementation of a procedure that, unlike Figure 9.7, actually
generates the brainpool224r1 curve.

9.8. SCRIPTS 145

import sys

import hashlib # for a PRNG, SHA-1 is standard and sufficiently secure
def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()
seedbytes = 20 # 160-bit size for seed, determined by SHA-1 output size

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed): # add 1 to seed, viewed as integer
return int2str(str2int(seed) + 1,len(seed))

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

sizes = [160,192,224,256,320,384,512]
S = real2str(pi/16,len(sizes)*seedbytes)
primeseeds = [S[i:i+seedbytes] for i in range(0,len(S),seedbytes)]
S = real2str(exp(1)/16,len(sizes)*seedbytes)
curveseeds = [S[i:i+seedbytes] for i in range(0,len(S),seedbytes)]

for j in range(len(sizes)):
L,S = sizes[j],primeseeds[j]
v = (L-1)//160

def fullhash(seed,bits):
h = hash(seed)
for i in range(v): seed = update(seed); h += hash(seed)
return str2int(h) % 2^bits

Figure 9.9: Part 1 of 2: A complete procedure to generate the Brainpool standard
curves. Continued in Figure 9.10.

146 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

while True:
p = fullhash(S,L)
while not (p % 4 == 3 and p.is_prime()): p += 1
if 2^(L-1) - 1 < p and p < 2^L: break
S = update(S)

k = GF(p)
R.<x> = k[]

def secure(A,B):
E = EllipticCurve([k(A),k(B)])
for q in [2,3,5,7]:

quick check whether q divides n, without computing n
for r,e in E.division_polynomial(q).roots():

if E.is_x_coord(r): return False
n = E.cardinality()
return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

S = curveseeds[j]
while True:

A = fullhash(S,L-1)
if not (k(A)*x^4+3).roots(): S = update(S); continue
while True:

S = update(S)
B = fullhash(S,L-1)
if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue
print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
sys.stdout.flush()
break

Figure 9.10: Part 2 of 2: A complete procedure to generate the Brainpool
standard curves. Continued from Figure 9.9.

9.8. SCRIPTS 147

import simplesha3
hash = simplesha3.sha3512 # SHA-3 standard at maximum security level

p = 2^224 - 2^96 + 1 # standard NIST P-224 prime
k = GF(p)
seedbytes = 20 # standard 160-bit size for seed

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed): # change all bits, eliminating Brainpool-type collisions
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4 # number of bytes in a 32-bit integer
nums = real2str(cos(1),seedbytes - sizeofint)
for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums
T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
A 7144BA12CE8A0C3BEFA053EDBADA555A42391FC64F052376E041C7D4AF23195EBD8D83625321D452E8A0C3BB0
A048A26115704E45DCEB346A9F4BD9741D14D49
B 5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276BA3669AFF6FFC0F4C6AE4AE2E5
D74C3C0AF97DCE17147688DDA89E734B56944A2

Figure 9.11: A procedure to generate the new “verifiably pseudorandom”
BADA55-VPR-224 curve. Compare Figure 9.8.

148 CHAPTER 9. HOW TO MANIPULATE CURVE STANDARDS

import simplesha3 # Keccak, the SHA-3 winner
hash = simplesha3.keccakc1024 # maximum security level: 512-bit output
seedbytes = 64 # maximum-security 512-bit seed, same size as output

p = 2^224 - 2^96 + 1 # standard NIST P-224 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes): # standard little-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in range(bytes)])

def str2int(seed):
return sum([ord(seed[i])*256^i for i in range(len(seed))])

def rotate(seed): # rotate seed by 1 bit, eliminating Brainpool-like collisions
x = str2int(seed)
x = 2*x + (x >> (8*len(seed)-1))
return int2str(x,len(seed))

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

counterbytes = 3 # minimum number of bytes needed to guarantee success
nums = real2str(exp(1)/4,seedbytes - counterbytes)
for counter in xrange(0,256^counterbytes):

S = int2str(counter,counterbytes) + nums
R = rotate(S)
A = str2int(hash(R))
B = str2int(hash(S))
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
A 8F0FF20E1E3CF4905D492E04110683948BFC236790BBB59E6E6B33F24F348ED2E16C64EE79F9FD27E9A367FF6
415B41189E4FB6BADA555455DC44C4F87011EEF
B E85067A95547E30661C854A43ED80F36289043FFC73DA78A97E37FB96A2717009088656B948865A660FF3959
330D8A1CA1E4DE31B7B7D496A4CDE555E57D05C

Figure 9.12: A procedure to generate the new “verifiably pseudorandom”
BADA55-VPR2-224 curve. Compare Figure 9.11.

Part IV

Multivariate System Solving
with XL

149

10
Parallel implementation of the XL

algorithm

Some cryptographic systems can be attacked by solving a system of multivariate
quadratic equations. For example the symmetric block cipher AES can be attacked
by solving a system of 8000 quadratic equations with 1600 variables over F2 as shown
by Courtois and Pieprzyk in [CP02] or by solving a system of 840 sparse quadratic
equations and 1408 linear equations over 3968 variables of F256 as shown by Murphy
and Robshaw in [MR02]. Multivariate cryptographic systems can be attacked natu-
rally by solving their multivariate quadratic system; see for example the analysis of
the QUAD stream cipher by Yang, Chen, Bernstein, and Chen in [YCB+07].

We describe a parallel implementation of an algorithm for solving quadratic sys-
tems that was first suggested by Lazard in [Laz83]. Later it was reinvented by Cour-
tois, Klimov, Patarin, and Shamir and published in [CKP+00]; they call the algorithm
XL as an acronym for extended linearization: XL extends a quadratic system by mul-
tiplying all equations with appropriate monomials and linearizes it by treating each
monomial as an independent variable. Due to this extended linearization, the problem
of solving a quadratic system turns into a problem of linear algebra.

XL is a special case of Gröbner basis algorithms (shown by Ars, Faugère, Imai,
Kawazoe, and Sugita in [AFI+04]) and can be used as an alternative to other Gröbner
basis solvers like Faugère’s F4 and F5 algorithms (introduced in [Fau99] and [Fau02]).
An enhanced version of F4 is implemented for example in the computer algebra system
Magma, and is often used as standard benchmark by cryptographers.

There is an ongoing discussion on whether XL-based algorithms or algorithms
of the F4/F5-family are more efficient in terms of runtime complexity and mem-
ory complexity. To achieve a better understanding of the practical behaviour of
XL for generic systems, we describe a parallel implementation of the XL algorithm

151

152 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

for shared-memory systems, for small computer clusters, and for a combination of
both. Measurements of the efficiency of the parallelization have been taken at small
clusters of up to 8 nodes and shared-memory systems of up to 64 cores. A previ-
ous implementation of XL is PWXL, a parallel implementation of XL with block
Wiedemann described in [MDK+10]. PWXL supports only F2, while our imple-
mentation supports F2, F16, and F31. Furthermore, our implementation is modu-
lar and can be extended to other fields. Comparisons on performance of PWXL
and our work will be shown in Section 10.5.3. Our implementation is available at
http://www.polycephaly.org/projects/xl/.

This chapter is structured as follows: The XL algorithm is introduced in Sec-
tion 10.1. The parallel implementation of XL using the block Wiedemann algorithm
is described in Section 10.4. Section 10.5 gives runtime measurements and perfor-
mance values that are achieved by our implementation for a set of parameters on
several parallel systems as well as comparisons to PWXL and to the implementation
of F4 in Magma.

10.1 The XL algorithm
The original description of XL for multivariate quadratic systems can be found in the
paper [CKP+00]; a more general definition of XL for systems of higher degree is given
in [Cou03]. The following gives an introduction of the XL algorithm for quadratic
systems; the notation is adapted from [YCC04]:

Consider a finite field K = Fq and a system A of m multivariate quadratic equa-
tions `1 = `2 = · · · = `m = 0 for `i ∈ K[x1, x2, . . . , xn]. For b ∈ Nn denote by xb the
monomial xb11 x

b2
2 . . . xbnn and by |b| = b1 + b2 + · · ·+ bn the total degree of xb.

XL first chooses a D ∈ N as D := min{d : ((1 − λ)m−n−1(1 + λ)m)[d] ≤ 0}
(see [YC05, Eq. (7)], [Moh01; Die04]), where f [i] denotes the coefficient of the degree-i
term in the expansion of a polynomial f(λ) e.g., (λ+2)3[2] = (λ3+6λ2+12λ+8)[2] = 6.
XL extends the quadratic system A to the system R(D) = {xb`i = 0 : |b| ≤ D−2, `i ∈
A} of maximum degree D by multiplying each equation of A by all monomials of
degree less than or equal to D − 2. Now, each monomial xd, |d| ≤ D is considered a
new variable to obtain a linear systemM. Note that the system matrix ofM is sparse
since each equation has the same number of non-zero coefficients as the corresponding
equation of the quadratic system A. Finally the linear system M is solved, giving
solutions for all monomials and particularly for x1, x2, . . . , xn. Note that the matrix
corresponding to the linear system M is the Macaulay matrix of degree D for the
polynomial system A (see [Mac16], e.g., defined in [FPP+12]).

10.1.1 The Block Wiedemann algorithm
The computationally most expensive task in XL is to find a solution for the sparse
linear system M of equations over a finite field. There are two popular algorithms
for that task, the block Lanczos algorithm [Mon95] and the block Wiedemann al-
gorithm [Cop94]. The block Wiedemann algorithm was proposed by Coppersmith
in 1994 and is a generalization of the original Wiedemann algorithm [Wie86]. It
has several features that make it powerful for computation in XL: From the original

http://www.polycephaly.org/projects/xl/

10.2. THE BLOCK BERLEKAMP–MASSEY ALGORITHM 153

Wiedemann algorithm it inherits the property that the runtime is directly propor-
tional to the weight of the input matrix. Therefore, this algorithm is suitable for
solving sparse matrices, which is exactly the case for XL. Furthermore, big parts of
the block Wiedemann algorithm can be parallelized on several types of parallel archi-
tectures. The following paragraphs give a brief introduction to the block Wiedemann
algorithm. For more details please refer to [Nie12, Section 4.2] and [Cop94].

The basic idea of Coppersmith’s block Wiedemann algorithm for finding a solution
x̄ 6= 0 of Bx̄ = 0 for B ∈ KN×N , x̄ ∈ KN (where B corresponds to the system matrix
of M when computing XL) is the same as in the original Wiedemann algorithm:
Assume that the characteristic polynomial f(λ) =

∑
0≤i f [i]λi of B is known. Since

B is singular, it has an eigenvalue 0, thus f(B) = 0 and f [0] = 0. We have:

f(B)z̄ =
∑
i>0

f [i]Biz̄ = B
∑
i>0

f [i]Bi−1z̄ = 0,

for any vector z̄ ∈ KN . Therefore, x̄ =
∑
i>0 f [i]Bi−1z̄, z̄ 6= 0 is a (hopefully non-

zero) kernel vector and thus a solution of the linear equation system. In fact it is
possible to use any annihilating polynomial f(λ) of B, i.e., a polynomial f(λ) 6= 0
such that f(B) = 0.

Wiedemann suggests to use the Berlekamp–Massey algorithm for the computation
of f(λ). Given a linear recurrent sequence {a(i)}∞i=0, the algorithm computes c1, . . . , cd
for some d such that c1a(d−1) + c2a

(d−2) + · · ·+ cda
(0) = 0. Choosing a(i) = x̄TBBiz̄

with random vectors x̄ and z̄ (as delegates for BBi) as input and f [i] = cd−i, 0 ≤ i < d
as output returns f(λ) as an annihilating polynomial of B with high probability.

Coppersmith [Cop94] proposed a modification of the Wiedemann algorithm that
makes it more suitable for modern computer architectures by operating in parallel
on a block of ñ column vectors z̄i, 0 ≤ i < ñ, of a matrix z ∈ KN×ñ. His block
Wiedemann algorithm computes kernel vectors in three steps which are called BW1,
BW2, and BW3 for the remainder of this chapter. The block sizes of the block
Wiedemann algorithm are the integers m̃ and ñ. They can be chosen freely for the
implementation such that they give the best performance on the target architecture
for matrix and vector operations, e.g., depending on the size of cache lines or vector
registers. Step BW1 computes the first N/m̃ + N/ñ + (1) elements of a sequence
{a(i)}∞i=0, ai =

(
x · (B ·Biz)

)T ∈ Kñ×m̃ using random matrices x ∈ Km̃×N and
z ∈ KN×ñ. This sequence is the input for the second step BW2, a block variant of the
Berlekamp–Massey algorithm. It returns a matrix polynomial f(λ) with coefficients
f [j] ∈ Kñ×ñ, that is used by step BW3 to compute up to ñ solution vectors in a
blocked fashion similar as described above for the original Wiedemann algorithm.

10.2 The block Berlekamp–Massey algorithm

This section first introduces a tweak that makes it possible to speed up computations
of Coppersmith’s variant of the Berlekamp–Massey algorithm. Then the paralleliza-
tion of the algorithm is described.

154 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

Algorithm 3 Gaussian elimination in Coppersmith’s Berlekamp–Massey algorithm
1: function eliminate(H(j) ∈ K(m+n)×m, a list of nominal degrees d(j))
2: M ← H(j), P ← Im+n, E ← Im+n

3: sort the rows of M by the nominal degrees in decreasing order
4: apply the same permutation to P (j) and E(j)

5: for k = 1→ m do
6: for i = (m+ n+ 1− k)→ 1 do
7: if Mi,k 6= 0 then
8: v(M) ←Mi,
9: v(P) ← Pi,

10: v(E) ← Ei
11: end if
12: end for
13: for l = i+ 1→ (m+ n+ 1− k) do
14: Ml−1 ←Ml,
15: Pl−1 ← Pl,
16: El−1 ← El
17: end for
18: M(m+n+1−k) ← v(M), P(m+n+1−k) ← v(P), E(m+n+1−k) ← v(E)

19: for l = 1→ (m+ n− k) do
20: if Ml,k 6= 0 then
21: Ml ←Ml − v(M) · (Ml,k/v(M)k)
22: Pl ← Pl − v(P) · (Ml,k/v(M)k)
23: end if
24: end for
25: end for
26: P (j) ← P
27: E(j) ← E
28: return (P (j) ∈ K(m+n)×(m+n), E(j) ∈ K(m+n)×(m+n))
29: end function

10.2.1 Reducing the cost of the block Berlekamp–Massey al-
gorithm

The j-th iteration of Coppersmith’s Berlekamp–Massey algorithm requires a matrix
P (j) ∈ K(m+n)×(m+n) such that the first n rows of P (j)H(j) are all zeros. The main
idea of this tweak is to make P (j) have the form

P (j) =

(
In ∗
0 Im

)
E(j),

where E(j) is a permutation matrix corresponding to a permutation φ(j) (the super-
script of φ(j) will be omitted in this section). Therefore, the multiplication P (j)f (j)

takes only deg(f (j)) ·Mul(n,m, n) field operations (for the upper right submatrix in
P (j)).

The special form of P (j) also makes the computation of H(j) more efficient: The

10.2. THE BLOCK BERLEKAMP–MASSEY ALGORITHM 155

bottom m rows of each coefficient are simply permuted due to the multiplication by
P (j), thus

(P (j)f (j)[k])i = (f (j)[k])φ(i),

for n < i ≤ m + n, 0 < k ≤ deg(f (j)). Since multiplication by Q corresponds to a
multiplication of the bottom m rows by λ, it does not modify the upper n rows of
the coefficients. Therefore, the bottom m rows of the coefficients of f (j+1) can be
obtained from f (j) as

(f (j+1)[k])i = (QP (j)f (j)[k − 1])i = (f (j)[k − 1])φ(i),

for n < i ≤ m + n, 0 < k ≤ deg(f (j)). Since the bottom right corner of P (j) is the
identity matrix of size m, this also holds for

((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i).

Thus, H(j+1)
i for n < i ≤ m+ n can be computed as

H
(j+1)
i = ((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i) = H

(j)
φ(i).

This means the last m rows of H(j+1) can actually be copied from H(j); only the first
n rows of H(j+1) need to be computed. Therefore the cost of computing any H(j>j0)

is reduced to deg(f (j)) ·Mul(n, n,m).
The matrix P (j) can be assembled as follows: The matrix P (j) is computed using

Algorithm 3. In this algorithm a sequence of row operations is applied to M := H(j).
The matrix H(j) has rank m for all j ≥ j0. Therefore in the end the first n rows of M
are all zeros. The composition of all the operations is P (j); some of these operations
are permutations of rows. The composition of these permutations is E(j):

P (j)(E(j))−1 =

(
In ∗
0 F (j)

)
⇐⇒ P (j) =

(
In ∗
0 F (j)

)
E(j).

The algorithm by Coppersmith requires that the first n rows of P (j)H(j) are all zero
(see [Cop94, p. 7]); there is no condition for the bottom m rows. However, the first
n rows of P (j)H(j) are all zero independently of the value of F (j). Thus, F (j) can be
replaced by Im without harming this requirement.

10.2.2 Parallelization of the block Berlekamp–Massey
algorithm

The parallel implementation of the block Berlekamp–Massey algorithm on c nodes
works as follows: In each iteration step, the coefficients of f (j)(λ) are equally dis-
tributed over the computing nodes; for 0 ≤ i < c, let S(j)

i be the set containing all
indices of coefficients stored by node i during the j-th iteration. Each node stores a
copy of all coefficients of a(λ).

Due to the distribution of the coefficients, the computation of

H(j) = (f (j)a)[j] =

j∑
l=0

f (j)[l]a[j − l]

156 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

requires communication: Each node i first locally computes a part of the sum using
only its own coefficients S(j)

i of f (j). The matrix H(j) is the sum of all these interme-
diate results. Therefore, all nodes broadcast their intermediate results to the other
nodes. Each node computes H(j) locally; Gaussian elimination is performed on every
node locally and is not parallelized over the nodes. Since only small matrices are
handled, this sequential overhead is negligibly small.

Also the computation of f (j+1) requires communication. Recall that

f (j+1) = QP (j)f (j), for Q =

(
In 0
0 λ · Im

)
.

Each coefficient k is computed row-wise as

(f (j+1)[k])l =

{
((P (j)f (j))[k])l, for 0 < l ≤ n,
((P (j)f (j))[k − 1])l, for n < l ≤ m+ n.

Computation of f (j+1)[k] requires access to both coefficients k and (k − 1) of f (j).
Therefore, communication cost is reduced by distributing the coefficients equally over
the nodes such that each node stores a continuous range of coefficients of f (j) and
such that the indices in S(j)

i+1 always are larger than those in S(j)
i .

Due to the multiplication by Q, the degree of f (j) is increased by at most one
in each iteration. Therefore at most one more coefficient must be stored. The new
coefficient obviously is the coefficient with highest degree and therefore must be stored
on node (c − 1). To maintain load balancing, one node i(j) is chosen in a round-
robin fashion to receive one additional coefficient; coefficients are exchanged between
neighbouring nodes to maintain an ordered distribution of the coefficients.

Observe, that only node (c − 1) can check whether the degree has increased,
i.e. whether deg(f (j+1)) = deg(f (j)) + 1, and whether coefficients need to be redis-
tributed; this information needs to be communicated to the other nodes. To avoid
this communication, the maximum nominal degree max(d(j)) is used to approximate
deg(f (j)). Note that in each iteration all nodes can update a local list of the nominal
degrees. Therefore, all nodes decide locally without communication whether coef-
ficients need to be reassigned: If max(d(j+1)) = max(d(j)) + 1, the number i(j) is
computed as

i(j) = max(d(j+1)) mod c.

Node i(j) is chosen to store one additional coefficient, the coefficients of nodes i, for
i ≥ i(j), are redistributed accordingly.

Table 10.1 illustrates the distribution strategy for 4 nodes. For example in iteration
3, node 1 has been chosen to store one more coefficient. Therefore it receives one
coefficient from node 2. Another coefficient is moved from node 3 to node 2. The new
coefficient is assigned to node 3.

This distribution scheme does not avoid all communication for the computation
of f (j+1): First all nodes compute P (j)f (j) locally. After that, the coefficients are
multiplied by Q. For almost all coefficients of f (j), both coefficients k and (k − 1) of
P (j)f (j) are stored on the same node, i.e. k ∈ S(j)

(i) and (k− 1) ∈ S(j)
(i) . Thus, f

(j+1)[k]

can be computed locally without communication. In the example in Figure 10.1, this

10.2. THE BLOCK BERLEKAMP–MASSEY ALGORITHM 157

iteration j S
(j)
3 S

(j)
2 S

(j)
1 S

(j)
0 max(d(j))

0 ∅ ∅ {1} {0} 1
1 ∅ {2} {1} {0} 2
2 {3} {2} {1} {0} 3
3 {4} {3} {2} {1,0} 4
4 {5} {4} {3,2} {1,0} 5
5 {6} {5,4} {3,2} {1,0} 6
6 {7,6} {5,4} {3,2} {1,0} 7
.

Table 10.1: Example for the workload distribution over 4 nodes. Iteration 0
receives the distribution in the first line as input and computes the new distribution
in line two as input for iteration 1.

is the case for k ∈ {0, 1, 2, 4, 5, 7, 9, 10}. Note that the bottom m rows of f (j+1)[0]
and the top n rows of f (j+1)[max(d(j+1))] are 0.

Communication is necessary if coefficients k and (k− 1) of P (j)f (j) are not on the
same node. There are two cases:

• In case k − 1 = max(S
(j+1)
i−1) = max(S

(j)
i−1), i 6= 1, the bottom m rows of

(P (j)f (j))[k−1] are sent from node i−1 to node i. This is the case for k ∈ {6, 3}
in Figure 10.1. This case occurs if in iteration j + 1 no coefficient is reassigned
to node i− 1 due to load balancing.

• In case k = min(S
(j)
i) = max(S

(j+1)
i−1), i 6= 1, the top n rows of (P (j)f (j))[k] are

sent from node i to node i − 1. The example in Figure 10.1 has only one such
case, namely for coefficient k = 8. This happens, if coefficient k got reassigned
from node i to node i− 1 in iteration j + 1.

If max(d(j+1)) = max(d(j)), i.e. the maximum nominal degree is not increased
during iteration step j, only the first case occurs since no coefficient is added and
therefore reassignment of coefficients is not necessary.

The implementation of this parallelization scheme uses the Message Passing In-
terface (MPI) for computer clusters and OpenMP for multi-core architectures. For
OpenMP, each core is treated as one node in the parallelization scheme. Note that
the communication for the parallelization with OpenMP is not programmed explic-
itly since all cores have access to all coefficients; however, the workload distribution
is performed as described above. For the cluster implementation, each cluster node
is used as one node in the parallelization scheme. Broadcast communication for the
computation of H(j) is implemented using a call to the MPI_Allreduce function.
One-to-one communication during the multiplication by Q is performed with the
non-blocking primitives MPI_Isend and MPI_Irecv to avoid deadlocks during com-
munication. Both OpenMP and MPI can be used together for clusters of multi-core
architectures. For NUMA systems the best performance is achieved when one MPI
process is used for each NUMA node since this prevents expensive remote-memory
accesses during computation.

158 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

0

0

P (j)f (j)

f (j+1)

S
(j)
i

S
(j+1)
i

012345678910 k

node 3 node 2 node 1 node 0

Figure 10.1: Example for the communication between 4 nodes. The top n rows
of the coefficients are colored in blue, the bottom m rows are colored in red.

The communication overhead of this parallelization scheme is very small. In each
iteration, each node only needs to receive and/or send data of total size O(n2). Ex-
pensive broadcast communication is only required rarely, such that it takes only a
small amount of time compared to the time spent for computation. Therefore this
parallelization of Coppersmith’s Berlekamp–Massey algorithm scales well on a large
number of nodes. Furthermore, since f (j) is distributed over the nodes, the memory
requirement is distributed over the nodes as well.

10.3 Thomé’s subquadratic version of the block
Berlekamp–Massey algorithm

In 2002 Thomé presented an improved version of Coppersmith’s variation of the
Berlekamp–Massey algorithm [Tho02]. Thomé’s version is asymptotically faster: It
reduces the complexity from O(N2) to O(N log2(N)) (assuming thatm and n are con-
stants). The subquadratic complexity is achieved by converting the block Berlekamp–
Massey algorithm into a recursive divide-and-conquer process. Thomé’s version builds
the output polynomial f(λ) of BW2 using a binary product tree; therefore, the main
operations in the algorithm are multiplications of matrix polynomials. The imple-
mentation of Coppersmith’s version of the algorithm is used to handle bottom levels
of the recursion in Thomé’s algorithm, as suggested in [Tho02, Section 4.1].

The main computations in Thomé’s version of the Berlekamp–Massey algorithm
are multiplications of matrix polynomials. The first part of this section will take a
brief look how to implement these efficiently. The second part gives an overview of
the approach for the parallelization of Thomé’s Berlekamp–Massey algorithm.

10.3.1 Matrix polynomial multiplications

In order to support multiplication of matrix polynomials with various operand sizes in
Thomé’s Berlekamp–Massey algorithm, several implementations of multiplication al-

10.3. THOMÉ’S VERSION OF THE BLOCK BERLEKAMP–MASSEY
ALGORITHM 159

gorithms are used including Karatsuba, Toom–Cook, and FFT-based multiplications.
FFT-based multiplications are the most important ones because they are used to deal
with computationally expensive multiplications of operands with large degrees.

Different kinds of FFT-based multiplications are used for different fields: The field
F2 uses the radix-3 FFT multiplication presented in [Sch77]. For F16 the operands are
transformed into polynomials over F169 by packing groups of 5 coefficients together.
Then a mixed-radix FFT is applied using a primitive r-th root of unity in F169 . In
order to accelerate FFTs, it is ensured that r is a number without large (≥ 50) prime
factors. F169 is chosen because it has several advantages. First, by exploiting the
Toom-Cook multiplication, a multiplication in F169 takes only 9log3 5 = 25 multiplica-
tions in F16. Moreover, by setting F16 = F2[x]/(x4+x+1) and F169 = F16[y]/(y9+x),
reductions after multiplications can be performed efficiently because of the simple form
of y9 + x. Finally, 169 − 1 has many small prime factors and thus there are plenty of
choices of r to cover various sizes of operands.

10.3.2 Parallelization of Thomé’s Berlekamp–Massey
algorithm

Thomé’s Berlekamp–Massey algorithm uses multiplication of large matrix polynomials
and Coppersmith’s Berlekamp–Massey algorithm as building blocks. The paralleliza-
tion of Coppersmith’s version has already been explained. Here the parallelization of
the matrix polynomial multiplications is described on the example of the FFT-based
multiplication.

The FFT-based multiplication is mainly composed of 3 stages: forward FFTs,
point-wise multiplications, and the reverse FFT. Let f, g be the inputs of forward
FFTs and f ′, g′ be the corresponding outputs; the point-wise multiplications take
f ′, g′ as operands and give h′ as output; finally, the reverse FFT takes h′ as input
and generates h.

For this implementation, the parallelization strategy for Thomé’s Berlekamp–
Massey algorithm is quite different from that for Coppersmith’s: Each node deals
with a certain range of rows. In the forward and reverse FFTs the rows of f , g, and
h′ are independent. Therefore, each FFT can be carried out in a distributed manner
without communication. The problem is that the point-wise multiplications require
partial f ′ but full g′. To solve this each node collects the missing rows of g′ from
the other nodes. This is done by using the function MPI_Allgather. Karatsuba and
Toom-Cook multiplication are parallelized in a similar way.

One drawback of this scheme is that the number of nodes is limited by the number
of rows of the operands. However, when the Macaulay matrix B is very large, the
runtime of BW2 is very small compared to BW1 and BW3 since it is subquadratic
in N . In this case using a different, smaller cluster or a powerful multi-core machine
for BW2 might give a sufficient performance as suggested in [KAF+10]. Another
drawback is, that the divide-and-conquer approach and the recursive algorithms for
polynomial multiplication require much more memory than Coppersmith’s version
of the Berlekamp–Massey algorithm. Thus Coppersmith’s version might be a better
choice on memory-restricted architectures or for very large systems.

160 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

10.4 Implementation of XL

Stage BW1 of the block Wiedemann algorithm computes a(i) =
(
x · (B ·Biz)

)T , 0 ≤
i ≤ N/m̃+N/ñ+ (1). We do this efficiently using two sparse-matrix multiplications
by making the random matrices x and z deliberately sparse. We compute a sequence
{t(i)}∞i=0 of matrices t(i) ∈ KN×n defined as

t(i) =

{
Bz for i = 0

Bt(i−1) for i > 0.

Thus, a(i) can be computed as a(i) = (xt(i))T . In step BW3 we evaluate the annihi-
lating polynomial f(λ) by applying Horner’s scheme, again using two sparse-matrix
multiplications by computing

W (j) =

{
z · (f [deg(f)]) for j = 0,

z · (f [deg(f)− j]) +B ·W (j−1) for 0 < j ≤ deg(f).

For details on the steps BW1, BW2, and BW3 please refer to [Nie12, Section 4.2].
Assuming that m̃ = c · ñ for some constant c ≥ 1, the asymptotic time complexity

of step BW1 and BW2 can be written as
(
N2 · wB

)
, where wB is the average number

of nonzero entries per row of B. Note that BW3 actually requires about half of the
time of BW1 since it requires only about half as many iterations. The asymptotic time
complexity of Coppersmith’s version of the Berlekamp–Massey algorithm in step BW2
is
(
N2 · ñ

)
. Thomé presents an improved version of Coppersmith’s block Berlekamp–

Massey algorithm in [Tho02]. Thomé’s version is asymptotically faster: It reduces the
complexity of BW2 from (N2 · ñ) to

(
N · log2(N) · ñ

)
. The subquadratic complexity

is achieved by converting the block Berlekamp–Massey algorithm into a recursive
divide-and-conquer process.

Since BW1 and BW3 have a higher asymptotic time complexity than Thomé’s
version of step BW2, we do not describe our implementation, optimization, and par-
allelization of Coppersmith’s and Thomé’s versions of step BW2 in detail in this chap-
ter for the sake of brevity. The interested reader is referred to [Nie12, Chap. 4] for
details. However, we discuss the performance of our implementations in Section 10.5.

Since the system matrix M has more rows than columns, some rows must be
dropped randomly to obtain a square matrix B. Observe that due to the extension
step of XL the entries of the original quadratic system A appear repeatedly in the
matrix B at well-defined positions based on the enumeration scheme. Therefore, it
is possible to generate the entries of B on demand spending a negligible amount of
memory. However, the computation of the entry positions requires additional time;
to avoid this computational overhead, we store the Macaulay matrix B in a compact
memory format (see [Nie12, Section 4.5.3]). This gives a significant speedup in the
computation time—given that the matrix B fits into available memory.

10.4.1 Efficient matrix multiplication
All matrix multiplications of the shape D = EF that we perform during XL are
either multiplications of a sparse matrix by a dense matrix, or multiplications of

10.4. IMPLEMENTATION OF XL 161

a dense matrix by a dense matrix where both matrices are of small size. For these
cases, schoolbook multiplication is more efficient than the asymptotically more efficient
Strassen algorithm or the Coppersmith–Winograd algorithm.

However, when computing in finite fields, the cost of matrix multiplications can
be significantly reduced by trading expensive multiplications for cheap additions—if
the field size is significantly larger than the row weight of E. This is the case for small
fields like, for example, F16 or F31. We reduce the number of actual multiplications
for a row r of E by summing up all row vectors of F which are to be multiplied by
the same field element and performing the multiplication on all of them together. A
temporary buffer bα ∈ Kn, α ∈ K of vectors of length n is used to collect the sum of
row vectors that ought to be multiplied by α. For all entries Er,c, row c of F is added
to bEr,c

. Finally, b can be reduced by computing
∑
α · bα, α 6= 0, α ∈ K, which gives

the result for row r of the matrix D.
With the strategy explained so far, computing the result for one row of E takes

wE+|K|−2 additions and |K|−2 scalar multiplications (there is no need for the multi-
plication by 0 and 1, and for the addition of 0). The number of actual multiplications
can be further reduced by exploiting the distributivity of the scalar multiplication of
vectors: Assume in the following that K = Fpk = Fp[x]/(f(x)), with p prime and
f(x) an irreducible polynomial with deg(f) = k. When k = 1, the natural mapping
from K to {0, 1, . . . , p − 1} ⊂ N induces an order of the elements. The order can be
extended for k > 1 by ∀β, γ ∈ K : β > γ ⇐⇒ β[i] > γ[i], i = max({j : β[j] 6= γ[j]}).
We decompose each scalar factor α ∈ K \{0, 1, x1, . . . , xk−1} of a multiplication α · bα
into two components β, γ ∈ K such that β, γ < α and β + γ = α. Starting with the
largest α, iteratively add bα to bβ and bγ and drop buffer bα. The algorithm termi-
nates when all buffers bα, α ∈ K \{0, 1, x1, . . . , xk−1} have been dropped. Finally, the
remaining buffers bα, α ∈ {1, x1, . . . , xk−1} are multiplied by their respective scalar
factor (except b1) and summed up to the final result. This reduces the number of
multiplications to k− 1. All in all the computation on one row of E (with row weight
wE) costs wE + 2(|K| − k− 1) + k− 1 additions and k− 1 scalar multiplications. For
example the computations in F16 require wE + 25 additions and 3 multiplications per
row of a matrix E.

10.4.2 Parallel Macaulay matrix multiplication

The most expensive part in the computation of steps BW1 and BW3 of XL is a
repetitive multiplication of the shape tnew = B · told, where tnew, told ∈ KN×ñ are
dense matrices and B ∈ KN×N is a sparse Macaulay matrix with an average row
weight wB .

For generic systems, the Macaulay matrix B has an expected number of non-zero
entries per row of (|K|−1)/|K| ·

(
n+2
2

)
. However, in our memory efficient data format

for the Macaulay matrix we also store the zero entries from the original system. This
results in a fixed row weight wB = |K| ·

(
n+2
2

)
. This is highly efficient in terms of

memory consumption and computation time for F16, F31, and larger fields (see [Nie12,
Chap. 4]). Since there is a guaranteed number of entries per row (i.e. the row weight
wB) we compute the Macaulay matrix multiplication in row order in a big loop over
all row indices as described in the previous section.

162 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

0

750

1500

2250

3000
0 750 1500 2250 3000

R
ow

s

Columns

Figure 10.2: Plot of a Macaulay matrix for a system with 8 variables, 10 equa-
tions, using graded reverse lexicographical (grevlex) monomial order.

The parallelization of the Macaulay matrix multiplication of steps BW1 and BW3
is implemented in two ways: On multi-core architectures OpenMP is used to keep
all cores busy; on cluster architectures the Message Passing Interface (MPI) and In-
finiBand verbs are used to communicate between the cluster nodes. Both approaches
can be combined for clusters of multi-core nodes.

The strategy of the workload distribution is similar on both multi-core systems
and cluster systems. Figure 10.2 shows an example of a Macaulay matrix. Our
approach for efficient matrix multiplications (described in the previous section) trades
multiplications for additions. The approach is most efficient, if the original number of
scalar multiplications per row is much higher than the order of the field. Since the row
weight of the Macaulay matrix is quite small, splitting the rows between computing
nodes reduces the efficiency of our approach. Therefore, the workload is distributed
by assigning blocks of rows of the Macaulay matrix to the computing units.

Parallelization for Shared-Memory Systems:

We parallelize the data-independent loop over the rows of the Macaulay matrix us-
ing OpenMP with the directive “#pragma omp parallel for”. The OpenMP par-
allelization on UMA systems encounters no additional communication cost although
the pressure on shared caches may be increased. On NUMA systems the best perfor-
mance is achieved if the data is distributed over the NUMA nodes in a way that takes
the higher cost of remote memory access into account. However, the access pattern to
told is very irregular due to the structure of the Macaulay matrix: In particular, the
access pattern of each core does not necessarily fully cover memory pages. Further-
more, the same memory page is usually touched by several cores. The same is true for

10.4. IMPLEMENTATION OF XL 163

tnew, since after each iteration tnew and told are swapped by switching their respec-
tive memory regions. Therefore, we obtained the shortest runtime by distributing the
memory pages interleaved (in a round-robin fashion) over the nodes.

Parallelization for Cluster Systems:

The computation on one row of the Macaulay matrix depends on many rows of the
matrix told. A straightforward approach is to make the full matrix told available on
all cluster nodes. This can be achieved by an all-to-all communication step after each
iteration of BW1 and BW3. If B were a dense matrix, such communication would
take only a small portion of the overall runtime. But since B is a sparse Macaulay
matrix which has a very low row weight, the computation time for one single row of
B takes only a small amount of time. In fact this time is in the order of magnitude
of the time that is necessary to send one row of tnew to all other nodes during the
communication phase. Therefore, this simple workload-distribution pattern gives a
large communication overhead.

This overhead is hidden when communication is performed in parallel to com-
putation. Today’s high-performance network interconnects are able to transfer data
via direct memory access (DMA) without interaction with the CPU, allowing the
CPU to continue computations alongside communication. It is possible to split the
computation of tnew into two column blocks; during computation on one block, previ-
ously computed results are distributed to the other nodes and therefore are available
at the next iteration step. Under the condition that computation takes more time
than communication, the communication overhead can almost entirely be hidden.
Otherwise speedup and therefore efficiency of cluster parallelization is bounded by
communication cost.

Apart from hiding the communication overhead it is also possible to totally avoid
all communication by splitting told and tnew into independent column blocks for each
cluster node. However, splitting told and tnew has an impact either on the runtime
of BW1 and BW3 (if the block size becomes too small for efficient computation) or
on the runtime of BW2 (since the block size has a strong impact on its runtime and
memory demand).

We implemented both approaches since they can be combined to give best per-
formance on a target system architecture. The following paragraphs explain the two
approaches in detail:

a) Operating on Two Shared Column Blocks of told and tnew: For this approach,
the matrices told and tnew are split into two column blocks told,0 and told,1 as
well as tnew,0 and tnew,1. The workload is distributed over the nodes row-wise
as mentioned before. First each node computes the results of its row range for
column block tnew,0 using rows from block told,0. Then a non-blocking all-to-all
communication is initiated which distributes the results of block tnew,0 over all
nodes. While the communication is going on, the nodes compute the results of
block tnew,1 using data from block told,1. After computation on tnew,1 is finished,
the nodes wait until the data transfer of block tnew,0 has been accomplished.
Ideally communication of block tnew,0 is finished earlier than the computation
of block tnew,1 so that the results of block tnew,1 can be distributed without

164 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

waiting time while the computation on block tnew,0 goes on with the next iter-
ation step.
However, looking at the structure of the Macaulay matrix (an example is shown
in Fig. 10.2) one can observe that this communication scheme performs much
more communication than necessary. For example on a cluster of four com-
puting nodes, node 0 computes the top quarter of the rows of matrices tnew,0
and tnew,1. Node 1 computes the second quarter, node 2 the third quarter,
and node 3 the bottom quarter. Node 3 does not require any row that has been
computed by node 0 since the Macaulay matrix does not have entries in the first
quarter of the columns for these rows. The obvious solution is that a node i
sends only these rows to a node j that are actually required by node j in the
next iteration step.
This communication pattern requires to send several data blocks to individual
cluster nodes in parallel to ongoing computation. This cannot be done effi-
ciently using MPI. Therefore, we circumvent the MPI API and program the
network hardware directly. Our implementation uses an InfiniBand network;
the same approach can be used for other high-performance networks. We ac-
cess the InfiniBand hardware using the InfiniBand verbs API. Programming
the InfiniBand cards directly has several benefits: All data structures that are
required for communication can be prepared offline; initiating communication
requires only one call to the InfiniBand API. The hardware is able to perform
all operations for sending and receiving data autonomously after this API call;
there is no need for calling further functions to ensure communication progress
as it is necessary when using MPI. Finally, complex communication patterns
using scatter-gather lists for incoming and outgoing data do not have a large
overhead. This implementation reduces communication to the smallest amount
possible for the cost of only a negligibly small initialization overhead.
This approach of splitting told and tnew into two shared column blocks has the
disadvantage that the entries of the Macaulay matrix need to be loaded twice
per iteration, once for each block. This gives a higher memory contention and
more cache misses than when working on a single column block. However, these
memory accesses are sequential. It is therefore likely that the access pattern
can be detected by the memory logic and that the data is prefetched into the
caches.

b) Operating on Independent Column Blocks of told and tnew: Any communica-
tion during steps BW1 and BW3 can be avoided by splitting the matrices told
and tnew into independent column blocks for each cluster node. The nodes com-
pute over the whole Macaulay matrix B on a column stripe of told and tnew. All
computation can be accomplished locally; the results are collected at the end of
the computation of these steps.
Although this is the most efficient parallelization approach when looking at
communication cost, the per-node efficiency drops drastically with higher node
count: For a high node count, the impact of the width of the column stripes of
told and tnew becomes even stronger than for the previous approach. Therefore,
this approach only scales well for small clusters. For a large number of nodes,

10.5. EXPERIMENTAL RESULTS 165

Table 10.2: Computer architectures used for the experiments

NUMA Cluster
CPU

Name AMD Opteron 6276 Intel Xeon E5620
Microarchitecture Bulldozer Interlagos Nehalem
Frequency 2300 MHz 2400 MHz
Number of CPUs per socket 2 1
Number of cores per socket 16 (2 x 8) 4
Level 1 data-cache size 16 × 48 KB 4 × 32 KB
Level 2 data-cache size 8 × 2 MB 4 × 256 KB
Level 3 data-cache size 2 × 8 MB 8 MB
Cache-line size 64 byte 64 byte

System Architecture
Number of NUMA nodes 4 sockets × 2 CPUs 2 sockets × 1 CPU
Number of cluster nodes — 8
Total number of cores 64 64
Network interconnect — InfiniBand MT26428

2 ports of 4×QDR, 32 Gbit/s
Memory

Memory per CPU 32 GB 18 GB
Memory per cluster node — 36 GB
Total memory 256 GB 288 GB

the efficiency of the parallelization declines significantly. Another disadvantage
of this approach is that since the nodes compute on the whole Macaulay matrix,
all nodes must store the whole matrix in their memory. For large systems this
is may not be feasible.

Both approaches for parallelization have advantages and disadvantages; the ideal
approach can only be found by testing each approach on the target hardware. For
small clusters approach b) might be the most efficient one although it loses efficiency
due to the effect of the width of told and tnew. The performance of approach a)
depends heavily on the network configuration and the ratio between computation
time and communication time. Both approaches can be combined by splitting the
cluster into independent partitions; the workload is distributed over the partitions
using approach b) and over the nodes within one partition using approach a).

10.5 Experimental results

This section gives an overview of the performance and the scalability of our XL imple-
mentation for generic systems. Experiments have been carried out on two computer
systems: a 64-core NUMA system and an eight node InfiniBand cluster. Table 10.2
lists the key features of these systems.

166 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

500

1000

1500

5000

10000

32 64 128 256 512 1024

R
un

ti
m
e
[s
]

Block Size : m̃ = ñ

BW1
BW2 Tho.
BW2 Cop.

BW3

0

20

40

60

80

32 64 128 256 5121024

M
em

or
y
[G

B
]

Block Size: m̃ = ñ

BW2 Tho.
BW2 Cop.

36Gb

Figure 10.3: Runtime and memory consumption of XL 16-14 over different block
sizes on a single cluster node with two CPUs (8 cores in total) and 36 GB RAM.

10.5.1 Impact of the block size

We measured the impact of the block size of the block Wiedemann algorithm on the
performance of the implementation on a single cluster node (without cluster commu-
nication). We used a quadratic system with 16 equations and 14 variables over F16.
In this case, the degree D for the linearization is 9. The input for the algorithm is a
Macaulay matrix B with N = 817190 rows (and columns) and row weight wB = 120.
To reduce the parameter space, we fix m̃ to m̃ = ñ.

Figure 10.3 shows the runtime for block sizes 32, 64, 128, 256, 512, and 1024. Given
the fixed size of the Macaulay matrix and m̃ = ñ, the number of field operations for
BW1 and BW2 is roughly the same for different choices of the block size ñ since
the number of iterations is proportional to 1/ñ and number of field operations per
iteration is roughly proportional to ñ. However, the runtime of the computation varies
depending on ñ.

During the i-th iteration step of BW1 and BW3, the Macaulay matrix is multiplied
with a matrix t(i−1) ∈ FN×ñ16 . For F16 each row of t(i−1) requires ñ/2 bytes of memory.
In the cases m̃ = ñ = 32 and m̃ = ñ = 64 each row thus occupies less than one
cache line of 64 bytes. This explains why the best performance in BW1 and BW3 is
achieved for larger values of ñ. The runtime of BW1 and BW3 is minimal for block
sizes m̃ = ñ = 256. In this case one row of t(i−1) occupies two cache lines. The
reason why this case gives a better performance than m̃ = ñ = 128 might be that the
memory controller is able to prefetch the second cache line. For larger values of m̃
and ñ the performance declines probably due to cache saturation.

According to the asymptotic time complexity of Coppersmith’s and Thomé’s ver-
sions of the Berlekamp–Massey algorithm, the runtime of BW2 should be proportional
to ñ. However, this turns out to be the case only for moderate sizes of ñ; note the
different scale of the graph in Fig. 10.3 for a runtime of more than 2000 seconds.
For m̃ = ñ = 256 the runtime of Coppersmith’s version of BW2 is already larger

10.5. EXPERIMENTAL RESULTS 167

than that of BW1 and BW3, for m̃ = ñ = 512 and m̃ = ñ = 1024 both versions of
BW2 dominate the total runtime of the computation. Thomé’s version is faster than
Coppersmith’s version for small and moderate block sizes. However, by doubling the
block size, the memory demand of BW2 roughly doubles as well; Figure 10.3 shows
the memory demand of both variants for this experiment. Due to the memory–time
trade-off of Thomé’s BW2, the memory demand exceeds the available RAM for a
block size of m̃ = ñ = 512 and more. Therefore, memory pages are swapped out of
RAM onto hard disk which makes the runtime of Thomé’s BW2 longer than that of
Coppersmith’s version of BW2.

10.5.2 Scalability experiments

The scalability was measured using a quadratic system with 18 equations and 16
variables over F16. The degree D for this system is 10. The Macaulay matrix B
has a size of N = 5 311 735 rows and columns; the row weight is wB = 153. Since
this experiment is not concerned with peak performance but with scalability, a block
size of m̃ = ñ = 256 is used. For this experiment, the implementation of the block
Wiedemann algorithm ran on 1, 2, 4, and 8 nodes of the cluster and on 1 to 8 CPUs
of the NUMA system. The approach a) (two shared column blocks) was used on the
cluster system for all node counts.

Given the runtime T1 for one computing node and Tp for p computing nodes, the
parallel efficiency Ep on the p nodes is defined as Ep = T1/pTp. Figure 10.4 shows
the parallel speedup and the parallel efficiency of BW1 and BW2; the performance of
BW3 behaves very similarly to BW1 and thus is not depicted in detail. These figures
show that BW1 and Coppersmith’s BW2 have a nice speedup and an efficiency of at
least 90% on 2, 4, and 8 cluster nodes. The efficiency of Thomé’s BW2 is only around
75% on 4 nodes and drops to under 50% on 8 nodes. In particular the polynomial
multiplications require a more efficient parallelization approach. However, Thomé’s
BW2 takes only a small part of the total runtime for this system size; for larger
systems it is even smaller due to its smaller asymptotic time complexity compared to
steps BW1 and BW3. Thus, a lower scalability than BW1 and BW3 can be tolerated
for BW2.

For this problem size, our parallel implementation of BW1 and BW3 scales very
well for up to eight nodes. However, at some point the communication time is going
to catch up with computation time: The computation time roughly halves with every
doubling of the number of cluster nodes, while the communication demand per node
shrinks with a smaller slope. Therefore, at a certain number of nodes communication
time and computation time are about the same and the parallel efficiency declines
for any larger number of nodes. We do not have access to a cluster with a fast
network interconnect and a sufficient amount of nodes to measure when this point
is reached, thus we can only give an estimation: Figure 10.5 shows the expected
time of computation and communication for larger cluster sizes. We computed the
amount of data that an individual node sends and receives depending on the number
of computing nodes. We use the maximum of the outgoing data for the estimation
of the communication time. For this particular problem size, we expect that for a
cluster of around 16 nodes communication time is about as long as computation time

168 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

0

2

4

6

8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
0%

25%

50%

75%

100%

Sp
ee
du

p

E
ffi
ci
en
cy

BW1 BW2
Thomé

BW2
Coppersmith

Number of Cluster Nodes

BW1 BW2
Thomé

BW2
Coppersmith

Number of NUMA Nodes

Speedup
Efficiency

Figure 10.4: Speedup and efficiency of BW1 and BW2

and that the parallel efficiency is going to decline for larger clusters.

On the NUMA system, the scalability is similar to the cluster system. BW1
achieves an efficiency of over 85% on up to 8 NUMA nodes. The workload was
distributed such that each CPU socket was filled up with OpenMP threads as much as
possible. Therefore, in the case of two NUMA nodes (16 threads) the implementation
achieves a high efficiency of over 95% since a memory controller on the same socket
is used for remote memory access and the remote memory access has only moderate
cost. When using more than one NUMA node, the efficiency declines to around 85%
due to the higher cost of remote memory access between different sockets. Also on
the NUMA system the parallelization of Thomé’s BW2 achieves only a moderate
efficiency of around 50% for 8 NUMA nodes. The parallelization scheme used for
OpenMP does not scale well for a large number of threads. The parallelization of
Coppersmith’s version of BW2 scales almost perfectly on the NUMA system. The
experiment with this version of BW2 is performed using hybrid parallelization by
running one MPI process per NUMA node and one OpenMP thread per core. The
overhead for communication is sufficiently small that it does not have much impact
on the parallel efficiency of up to 8 NUMA nodes.

Our experiments show that the shape of the Macaulay matrix has a large impact
on the performance and the scalability of XL. Currently, we are using graded reverse
lexicographical order for the Macaulay matrix. However, as opposed to Gröbner basis
solvers like F4 and F5, for XL there is no algorithmic or mathematic requirement for
any particular ordering. In our upcoming research, we are going to examine if another
monomial order or a redistribution of columns and rows of the Macaulay matrix has
a positive impact on the performance of our implementation.

10.5. EXPERIMENTAL RESULTS 169

2 4 8 16 32 64 128 256

R
un

ti
m
e

Number of Cluster Nodes

Communication
Computation

Sent per Node

Figure 10.5: Estimation of computation time vs. communication time on a clus-
ter system. The numbers for 2, 4, and 8 nodes are measurements, the numbers
for larger cluster sizes are estimations. The amount of data sent per node varies;
we show the maximum, minimum, and average.

10.5.3 Comparison with PWXL and Magma F4

To put our numbers into context, we compare our work with two other Gröbner
basis solvers in this section: with PWXL, a parallel implementation of XL with block
Wiedemann for F2 described in [MDK+10], and with the implementation of Faugère’s
F4 algorithm [Fau99] in the computational algebra system Magma.

Comparison with PWXL:

Figure 10.6 compares the runtime of PWXL and our implementation for systems in
F2 withm = n. We ran our XL implementation on our cluster system (see Table 10.2)
while PWXL was running on a machine with four six-core AMD Opteron 8435 CPUs,
running at 2.6 GHz.

Our implementation outperforms PWXL for the largest cases given in the paper,
e.g., for n = 33 our implementation is 24 times faster running on 8 cluster nodes (64
CPU cores) and still 6 times faster when scaling to 16 CPU cores. This significant
speedup may be explained by the fact that PWXL is a modification of the block-
Wiedemann solver for factoring RSA-768 used in [KAF+10]. Therefore, the code may
not be well optimized for the structure of Macaulay matrices. However, these numbers
show that our implementation achieves high performance for computations in F2.

Comparison with F4:

Figure 10.7 compares time and memory consumption of the F4 implementation in
Magma V2.17-12 and our implementation of XL for systems in F16 with m = 2n.
When solving the systems in Magma we coerce the systems into F256, because for F256

Magma performs faster than when using F16 directly. The computer used to run F4
has an 8 core Xeon X7550 CPU running at 2.0 GHz; however, F4 uses only one core

170 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

0.01

0.1

1

10

100

29 30 31 32 33 34 35 36

T
im

e
[h

rs
]

n

Our Work (64 cores)
Our Work (scaled to 16 cores)

PWXL (16 cores)

Figure 10.6: Comparison of the runtime of our work and PWXL, m = n, F2

of it. We ran XL on our NUMA system using all 64 CPU cores. For this comparison
we use Coppersmith’s version of BW2 since it is more memory efficient than Thomé’s
version.

Note that there is a jump in the graph when going from n = 21 to n = 22 for XL
our implementation, similarly when going from n = 23 to n = 24 for F4. This is due
to an increment of the degree D from 5 to 6, which happens earlier for XL. Therefore,
F4 takes advantage of a lower degree in cases such as n = 22, 23. Other XL-based
algorithms like Mutant-XL [MMD+08] may be able to fill this gap. In this chapter we
omit a discussion of the difference between the degrees of XL and F4/F5. However,
in cases where the degrees are the same for both algorithms, our implementation of
XL is better in terms of runtime and memory consumption.

For n = 25, the memory consumption of XL is less than 2% of that of F4. In
this case, XL runs 338 times faster on 64 cores than F4 on one single core, which
means XL is still faster when the runtime is normalized to single-core performance
by multiplying the runtime by 64.

10.5.4 Performance for computation on large systems
Table 10.3 presents detailed statistics of some of the largest systems we are able to
solve in a moderate amount of time (within at most one week). In the tables the time
(BW1, BW2, BW3, and total) is measured in seconds, and the memory is measured
in GB. Note that for the cluster we give the memory usage for a single cluster node.
While all the fields that we have implemented so far are presented in the table, we
point out that the most optimization has been done for F16.

The system with n = 32 variables and m = 64 equations over F16 listed in Ta-
ble 10.3 is the largest case we have tested. The system was solved in 5 days on the
cluster using block sizes m̃ = 256 and ñ = 128. With n = 32 and D = 7 we have
N =

(
n+D
D

)
=
(
32+7

7

)
= 15 380 937 and wB =

(
n+2
2

)
=
(
32+2

2

)
= 561. There are

roughly N/ñ + N/m̃ iterations in BW1 and N/ñ iterations in BW3. This leads to
2N/ñ+N/m̃Macaulay matrix multiplications, each takes about N · (wB + 25) · ñ ad-

10.5. EXPERIMENTAL RESULTS 171

0.001

0.01

0.1

1

10

100

1000

18 19 20 21 22 23 24 25

T
im

e
[h
rs
]

n

XL (64 cores)
XL (scaled)
Magma F4

0.01

0.1

1

10

100

18 19 20 21 22 23 24 25

M
em

or
y
[G

B
]

n

XL
Magma F4

Figure 10.7: Comparison of runtime and memory demand of our implementation
of XL and Magma’s implementation of F4, m = 2n

ditions and N · 3 · ñ multiplications in F16 (see Section 10.4.2). Operations performed
in BW2 are not taken into account, because BW2 requires only a negligible amount
of time. Therefore, solving the system using XL corresponds to computing about
(2 ·15 380 937/128 + 15 380 937/256) ·15 380 937 · (561 + 25) ·128 ≈ 258.3 additions and
about 250.7 multiplications in F16. Since one addition in F16 requires 4 bit operations,
this roughly corresponds to the computation of 4 · 258.3 ≈ 260.3 bit operations.

172 CHAPTER 10. PARALLEL IMPLEMENTATION OF XL

Field Machine m n D Time in [sec] Memory Block Size
BW1 BW2 BW3 total in [GB] m̃, ñ

F2 Cluster 32 32 7 3830 1259 2008 7116 2.4 512, 512
Cluster 33 33 7 6315 2135 3303 11778 3.0 512, 512
Cluster 34 34 7 10301 2742 5439 18515 3.8 512, 512
Cluster 35 35 7 16546 3142 8609 28387 4.6 512, 512
Cluster 36 36 7 26235 5244 15357 46944 5.6 512, 512

F16 NUMA 56 28 6 1866 330 984 3183 3.9 128,128
Cluster 1004 238 548 1795 1.3 256,256
NUMA 58 29 6 2836 373 1506 4719 4.6 128,128
Cluster 1541 316 842 2707 1.6 256,256
NUMA 60 30 7 91228 5346 64688 161287 68.8 256,128
Cluster 53706 3023 38052 94831 10.2 256,128
NUMA 62 31 7 145693 7640 105084 258518 76.7 256,128
Cluster 89059 3505 67864 160489 12.1 256,128
NUMA 64 32 7 232865 8558 163091 404551 100.3 256,128
Cluster 141619 3672 97924 244338 15.3 256,128

F31 NUMA 50 25 6 1729 610 935 3277 0.3 64,64
Cluster 1170 443 648 2265 0.7 128,128
NUMA 52 26 6 2756 888 1483 5129 0.4 64,64
Cluster 1839 656 1013 3513 0.9 128,128
NUMA 54 27 6 4348 1321 2340 8013 0.5 64,64
Cluster 2896 962 1590 5453 1.0 128,128
NUMA 56 28 6 6775 1923 3610 12313 0.6 64,64
Cluster 4497 1397 2458 8358 1.2 128,128
NUMA 58 29 6 10377 2737 5521 18640 0.7 64,64
Cluster 6931 2011 3764 12713 1.5 128,128

Table 10.3: Statistics of XL with block Wiedemann for F2 and F16 using Thomé’s
BW2, and F31 using Coppersmith’s BW2

Bibliography

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. “Robust encryption”.
In Theory of Cryptography, ed. by Daniele Micciancio, Vol. 5978, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, pages 480–
497. http://eprint.iacr.org/2008/440 (cit. on p. 78).

[ADP+15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
“Post-quantum key exchange – a new hope”. In IACR Cryptology ePrint
Archive (2015). https://eprint.iacr.org/2015/1092.pdf (cit. on
p. 24).

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe,
and Makoto Sugita. “Comparison between XL and Gröbner basis al-
gorithms”. In Advances in Cryptology—ASIACRYPT 2004, ed. by Pil
Joong Lee, Vol. 3329, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pages 338–353. http://www.iacr.org/arch
ive/asiacrypt2004/33290335/33290335.pdf (cit. on p. 151).

[AHK+01] Kazumaro Aoki, Fumitaka Hoshino, Tetsutaro Kobayashi, and Hiroaki
Oguro. “Elliptic curve arithmetic using SIMD”. In Information Security,
ed. by George I. Davida and Yair Frankel, Vol. 2200, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2001, pages 235–247 (cit.
on p. 20).

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. “An O(n log n) sort-
ing network”. In Proceedings of the 15th annual ACM symposium on
theory of computing, ed. by David S. Johnson, Ronald Fagin, Michael L.
Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H.
Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas,
Association for Computing Machinery, 1983, pages 1–9 (cit. on p. 31).

[ALS+13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
“More efficient oblivious transfer and extensions for faster secure compu-
tation”. In Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, Association for Computing Machin-
ery, 2013, pages 535–548. http://eprint.iacr.org/2013/552.pdf
(cit. on pp. 79, 89, 90).

[ALS+15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
“More efficient oblivious transfer extensions with security for malicious
adversaries”. In Advances in Cryptology—EUROCRYPT 2015, ed. by
Elisabeth Oswald and Marc Fisch, Vol. 9056, Lecture Notes in Computer

173

http://eprint.iacr.org/2008/440
https://eprint.iacr.org/2015/1092.pdf
http://www.iacr.org/archive/asiacrypt2004/33290335/33290335.pdf
http://www.iacr.org/archive/asiacrypt2004/33290335/33290335.pdf
http://eprint.iacr.org/2013/552.pdf

174 BIBLIOGRAPHY

Science. Springer Berlin Heidelberg, 2015, pages 673–701. https://epr
int.iacr.org/2015/061.pdf (cit. on pp. 79, 80).

[And05] Sean Eron Anderson. “Bit Twiddling Hacks”. 1997-2005. https://grap
hics.stanford.edu/~seander/bithacks.html (cit. on p. 48).

[ANS01] Accredited Standards Committee X9. “American national standard
X9.63-2001, public key cryptography for the financial services industry:
key agreement and key transport using elliptic curve cryptography”. Pre-
liminary draft at http://grouper.ieee.org/groups/1363/Research/
Other.html. 2001 (cit. on pp. 106, 109).

[ANS11] Agence nationale de la sécurité des systèmes d’information. “Publication
d’un paramétrage de courbe elliptique visant des applications de passe-
port électronique et de l’administration électronique française”. 2011. h
ttps://tinyurl.com/nhog26h (cit. on pp. 106, 109, 116).

[ANS99] Accredited Standards Committee X9. “American national standard
X9.62-1999, public key cryptography for the financial services industry:
the elliptic curve digital signature algorithm (ECDSA)”. Preliminary
draft at http://grouper.ieee.org/groups/1363/Research/Other.
html. 1999 (cit. on pp. 106, 109, 119).

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. “Lucky thirteen: break-
ing the TLS and DTLS record protocols”. In 2013 IEEE Symposium on
Security and Privacy, IEEE, 2013, pages 526–540. http://ieeexplor
e.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547086 (cit. on
p. 8).

[Aum15] Jean-Philippe Aumasson. “Generator of “nothing-up-my-sleeve”
(NUMS) constants”. 2015. https://github.com/veorq/numsgen/blob
/master/numsgen.py (cit. on p. 109).

[Bat68] Kenneth E. Batcher. “Sorting networks and their applications”. In
AFIPS conference proceedings, volume 32: 1968 Spring Joint Computer
Conference, Thompson Book Company, 1968, pages 307–314. http://w
ww.cs.kent.edu/~batcher/conf.html (cit. on p. 31).

[BBC+14] Benjamin Black, Joppe W. Bos, Craig Costello, Patrick Longa, and
Michael Naehrig. “Elliptic curve cryptography (ECC) nothing up my
sleeve (NUMS) curves and curve generation”. 2014. https://tools.ie
tf.org/html/draft-black-numscurves-00 (cit. on pp. 92, 133).

[BBC+15] Benjamin Black, Joppe W. Bos, Craig Costello, Adam Langley, Patrick
Longa, and Michael Naehrig. “Rigid parameter generation for elliptic
curve cryptography”. 2015. https://tools.ietf.org/html/draft-bl
ack-rpgecc-01 (cit. on p. 133).

[BBJ+08] Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-
tiane Peters. “Twisted edwards curves”. In Progress in Cryptology—
AFRICACRYPT 2008, ed. by Serge Vaudenay. Vol. 5023, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2008, pages 389–405.
https://eprint.iacr.org/2008/013.pdf (cit. on p. 85).

https://eprint.iacr.org/2015/061.pdf
https://eprint.iacr.org/2015/061.pdf
https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
http://grouper.ieee.org/groups/1363/Research/Other.html
http://grouper.ieee.org/groups/1363/Research/Other.html
https://tinyurl.com/nhog26h
https://tinyurl.com/nhog26h
http://grouper.ieee.org/groups/1363/Research/Other.html
http://grouper.ieee.org/groups/1363/Research/Other.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547086
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547086
https://github.com/veorq/numsgen/blob/master/numsgen.py
https://github.com/veorq/numsgen/blob/master/numsgen.py
http://www.cs.kent.edu/~batcher/conf.html
http://www.cs.kent.edu/~batcher/conf.html
https://tools.ietf.org/html/draft-black-numscurves-00
https://tools.ietf.org/html/draft-black-numscurves-00
https://tools.ietf.org/html/draft-black-rpgecc-01
https://tools.ietf.org/html/draft-black-rpgecc-01
https://eprint.iacr.org/2008/013.pdf

BIBLIOGRAPHY 175

[BC14] Daniel J. Bernstein and Tung Chou. “Faster binary-field multiplication
and faster binary-field MACs”. In Selected Areas in Cryptography, ed. by
Antoine Joux and Amr M. Youssef, Vol. 8781, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2014, pages 92–111. http://
eprint.iacr.org/2014/729.pdf (cit. on p. 3).

[BCC+15] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas
Hülsing, Eran Lambooij, Tanja Lange, Ruben Niederhagen, and Chris-
tine van Vredendaal. “How to manipulate curve standards: A white pa-
per for the black hat”. In Security Standardisation Research, ed. by Liqun
Chen and Shin’ichiro Matsuo, Vol. 9497, Lecture Notes in Computer
Science. Full version at http://bada55.cr.yp.to. Springer Berlin
Heidelberg, 2015, pages 109–139 (cit. on p. 3).

[BCH+13] Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E.
Lauter. “Fast cryptography in genus 2”. In Advances in Cryptology—
EUROCRYPT 2013, ed. by Thomas Johansson and Phong Q. Nguyen,
Vol. 7881, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2013, pages 194–210. http://www.iacr.org/archive/eurocryp
t2013/78810192/78810192.pdf (cit. on p. 93).

[BCL+14] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Peter Schwabe. “Kummer strikes back: new DH speed records”. In Ad-
vances in Cryptology—ASIACRYPT 2014, ed. by Palash Sarkar and
Tetsu Iwata, Vol. 8873, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2014, pages 317–337. https://eprint.iacr.org/2
014/134.pdf (cit. on pp. 23, 92, 93).

[BCL+15] Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig.
“Selecting elliptic curves for cryptography: an efficiency and security
analysis”. In Journal of Cryptographic Engineering (2015), pages 1–28.
https://eprint.iacr.org/2014/130 (cit. on pp. 109, 133–135, 138,
141).

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. “McBits: fast
constant-time code-based cryptography”. In Cryptographic Hardware
and Embedded Systems—CHES 2013, ed. by Guido Bertoni and Jean-
Sébastien Coron, Vol. 8086, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pages 250–272. https://eprint.iacr.org/2
015/610 (cit. on pp. 2, 22, 23, 39, 41, 42, 44, 46, 53, 62).

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. “High-speed high-security signatures”. In Cryptographic Hardware
and Embedded Systems—CHES 2011, ed. by Bart Preneel and Tsuyoshi
Takagi, Vol. Springer Berlin Heidelberg, Lecture Notes in Computer Sci-
ence. 2011. https://eprint.iacr.org/2011/368.pdf (cit. on pp. 23,
79, 85, 87, 89–95, 97, 100–104).

http://eprint.iacr.org/2014/729.pdf
http://eprint.iacr.org/2014/729.pdf
http: //bada55.cr.yp.to
http://www.iacr.org/archive/eurocrypt2013/78810192/78810192.pdf
http://www.iacr.org/archive/eurocrypt2013/78810192/78810192.pdf
https://eprint.iacr.org/2014/134.pdf
https://eprint.iacr.org/2014/134.pdf
https://eprint.iacr.org/2014/130
https://eprint.iacr.org/2015/610
https://eprint.iacr.org/2015/610
https://eprint.iacr.org/2011/368.pdf

176 BIBLIOGRAPHY

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. “High-speed high-security signatures”. In Journal of Cryptographic
Engineering Vol. 2,2 (2012), pages 77–89. https://eprint.iacr.org/
2011/368.pdf (cit. on p. 140).

[BDP+13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Keccak and the SHA-3 standardization”. 2013. http://csrc.nist.g
ov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
(cit. on pp. 35, 44, 86).

[Bea96] Donald Beaver. “Correlated pseudorandomness and the complexity of
private computations”. In Proceedings of the twenty-Eighth annual ACM
symposium on the theory of Computing, Association for Computing Ma-
chinery, 1996, pages 479–488. http://drona.csa.iisc.ernet.in/~ar
pita/StudyGroupOT15/BeaSTOC96.pdf (cit. on p. 79).

[Ben65] Václav E. Beneš. “Mathematical theory of connecting networks and tele-
phone traffic”. Academic Press, 1965 (cit. on p. 32).

[Ber00] Daniel J. Bernstein. “Fast multiplication”. 2000. http://cr.yp.to/tal
ks.html#2000.08.14 (cit. on p. 58).

[Ber04] Daniel J. Bernstein. “Cache-timing attacks on AES”. 2004. https://cr
.yp.to/papers.html#cachetiming (cit. on p. 8).

[Ber05] Daniel J. Bernstein. “The Poly1305-AES message-authentication code”.
In Fast Software Encryption, ed. by Henri Gilbert and Helena Hand-
schuh, Vol. 3557, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, pages 32–49. http://cr.yp.to/papers.html#poly1
305 (cit. on pp. 35, 44, 57).

[Ber06] Daniel J. Bernstein. “Curve25519: new Diffie–Hellman speed records”. In
Public Key Cryptography, ed. by Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, Vol. 3958, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, pages 207–228. http://cr.yp.to/pa
pers.html#curve25519 (cit. on pp. 79, 99, 100, 140).

[Ber07a] Daniel J. Bernstein. “Polynomial evaluation and message authentica-
tion”. 2007. http://cr.yp.to/papers.html#pema (cit. on pp. 66, 67).

[Ber07b] Daniel J. Bernstein. “qhasm software package”. 2007 (cit. on pp. 9, 30,
102).

[Ber08a] Daniel J. Bernstein. “Fast multiplication and its applications”. In Surveys
in algorithmic number theory, ed. by Joe P. Buhler and Peter Steven-
hagen, Vol. 44, Mathematical Sciences Research Institute Publications.
New York: Cambridge University Press, 2008, pages 325–384. http://
cr.yp.to/papers.html#multapps (cit. on p. 67).

[Ber08b] Daniel J. Bernstein. “The Salsa20 family of stream ciphers”. In New
Stream Cipher Designs, ed. by Matthew Robshaw and Olivier Billet,
Vol. 4986, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2008, pages 84–97. http://cr.yp.to/papers.html#salsafamil
y (cit. on pp. 35, 44).

https://eprint.iacr.org/2011/368.pdf
https://eprint.iacr.org/2011/368.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://drona.csa.iisc.ernet.in/~arpita/StudyGroupOT15/BeaSTOC96.pdf
http://drona.csa.iisc.ernet.in/~arpita/StudyGroupOT15/BeaSTOC96.pdf
http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/talks.html#2000.08.14
https://cr.yp.to/papers.html#cachetiming
https://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#salsafamily

BIBLIOGRAPHY 177

[Ber09a] Daniel J. Bernstein. “Batch binary Edwards”. In Advances in
Cryptology—CRYPTO 2009, ed. by Shai Halevi, Vol. 5677, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, pages 317–
336. http://cr.yp.to/papers.html#bbe (cit. on pp. 20, 24, 58).

[Ber09b] Daniel J. Bernstein. “Minimum number of bit operations for multipli-
cation”. 2009. http://binary.cr.yp.to/m.html (cit. on pp. 58, 60,
65).

[Ber09c] Daniel J. Bernstein. “Optimizing linear maps modulo 2”. In Workshop
Record of SPEED-CC: Software Performance Enhancement for Encryp-
tion and Decryption and Cryptographic Compilers, 2009, pages 3–18. h
ttp://cr.yp.to/papers.html#linearmod2 (cit. on p. 61).

[Ber11] Daniel J. Bernstein. “Simplified high-speed high-distance list decoding
for alternant codes”. In Post-quantum Cryptograhy, ed. by Bo-Yin Yang,
Vol. 7071, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2011, pages 200–216. http://cr.yp.to/papers.html#simpleli
st (cit. on p. 36).

[Ber68] Elwyn R. Berlekamp. “Algebraic coding theory”. McGraw-Hill, 1968 (cit.
on p. 36).

[Ber70] Elwyn R. Berlekamp. “Factoring polynomials over large finite fields”. In
Mathematics of Computation Vol. 24,111 (1970), pages 713–715. http:
//www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-027
6200-X/S0025-5718-1970-0276200-X.pdf (cit. on p. 27).

[BHK+13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
“Elligator: elliptic-curve points indistinguishable from uniform random
strings”. In Proceedings of the 2013 ACM SIGSAC conference on com-
puter & communications security, ed. by Ahmad-Reza Sadeghi, Virgil
D. Gligor, and Moti Yung, Association for Computing Machinery, 2013,
pages 967–980. http://elligator.cr.yp.to/ (cit. on pp. 133, 137).

[BHK+99] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Ro-
gaway. “UMAC: fast and secure message authentication”. In Advances
in Cryptology—CRYPTO’99, ed. by Michael Wiener, Vol. 1666, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1999, pages 216–
233. http://www.cs.ucdavis.edu/~rogaway/umac/ (cit. on pp. 57,
66).

[Bih97] Eli Biham. “A fast new DES implementation in software”. In Fast Soft-
ware Encryption, ed. by Eli Biham, Vol. 1267, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 1997, pages 260–272. ftp://
rowas.cz/pub/projects/john/contrib/bitslice-des/biham/cs089
1.ps.gz (cit. on p. 20).

[BJ02] Eric Brier and Marc Joye. “Weierstraß elliptic curves and side-channel
attacks”. In Public Key Cryptography, ed. by David Naccache and Pascal
Paillier, Vol. 2274, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2002, pages 335–345. http://joye.site88.net/papers/B
J02espa.pdf (cit. on p. 111).

http://cr.yp.to/papers.html#bbe
http://binary.cr.yp.to/m.html
http://cr.yp.to/papers.html#linearmod2
http://cr.yp.to/papers.html#linearmod2
http://cr.yp.to/papers.html#simplelist
http://cr.yp.to/papers.html#simplelist
http://www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-0276200-X/S0025-5718-1970-0276200-X.pdf
http://www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-0276200-X/S0025-5718-1970-0276200-X.pdf
http://www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-0276200-X/S0025-5718-1970-0276200-X.pdf
http://elligator.cr.yp.to/
http://www.cs.ucdavis.edu/~rogaway/umac/
ftp://rowas.cz/pub/projects/john/contrib/bitslice-des/biham/cs0891.ps.gz
ftp://rowas.cz/pub/projects/john/contrib/bitslice-des/biham/cs0891.ps.gz
ftp://rowas.cz/pub/projects/john/contrib/bitslice-des/biham/cs0891.ps.gz
http://joye.site88.net/papers/BJ02espa.pdf
http://joye.site88.net/papers/BJ02espa.pdf

178 BIBLIOGRAPHY

[BKN+10] Joppe Bos, Thorsten Kleinjung, Ruben Niederhagen, and Peter
Schwabe. “ECC2K-130 on Cell CPUs”. In Progress in Cryptology—
AFRICACRYPT 2010, ed. by Daniel J. Bernstein and Tanja Lange,
Vol. 6055, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2010, pages 225–242. https://eprint.iacr.org/2010/077.pdf
(cit. on p. 20).

[BL] Daniel J. Bernstein and Tanja Lange, eds. “eBACS: ECRYPT Bench-
marking of Cryptographic Systems”. http://bench.cr.yp.to (cit. on
pp. 22, 40, 89, 91–93).

[BL15] Daniel J. Bernstein and Tanja Lange. “SafeCurves: choosing safe curves
for elliptic-curve cryptography”. (accessed 27 September 2015). 2015. h
ttp://safecurves.cr.yp.to (cit. on pp. 79, 110, 111, 115).

[BLN+15] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebas-
tian Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and
Nigel P. Smart. “High performance multi-party computation for binary
circuits based on oblivious transfer”. In IACR Cryptology ePrint Archive
(2015). http://eprint.iacr.org/2015/472.pdf (cit. on p. 77).

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Attacking and
defending the McEliece cryptosystem”. In Post-quantum Cryptography,
ed. by Johannes Buchmann and Jintai Ding, Vol. 5299, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2008, pages 31–46. h
ttps://eprint.iacr.org/2008/318.pdf (cit. on pp. 19, 22).

[BM74] Allan Borodin and Robert T. Moenck. “Fast modular transforms”. In
Journal of Computer and System Sciences Vol. 8,3 (1974). Note: older
version, not a subset, in [MB72], pages 366–386 (cit. on p. 25).

[BM89] Mihir Bellare and Silvio Micali. “Non-interactive oblivious transfer and
applications”. In Advances in Cryptology—CRYPTO ’89, ed. by Mihir
Bellare and Silvio Micali, Vol. 435, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1989, pages 547–557 (cit. on p. 79).

[Bor56] J. L. Bordewijk. “Inter-reciprocity applied to electrical networks”. In
Applied Scientific Research B: Electrophysics, Acoustics, Optics, Math-
ematical Methods Vol. 6,1 (1956), pages 1–74 (cit. on p. 29).

[BP96] Eric Bach and René Peralta. “Asymptotic semismoothness probabili-
ties”. In Mathematics of Computation Vol. 65,216 (1996), pages 1701–
1715. http://www.ams.org/journals/mcom/1996-65-216/S0025-571
8-96-00775-2/S0025-5718-96-00775-2.pdf (cit. on p. 116).

[Bra05] ECC Brainpool. “ECC Brainpool standard curves and curve generation”.
2005. http://www.ecc-brainpool.org/download/Domain-parameter
s.pdf (cit. on pp. 106, 109, 124–126, 135, 139, 143).

[Bro] Nicolai Brown. “IANIX”. https://ianix.com/ (cit. on p. 91).

https://eprint.iacr.org/2010/077.pdf
http://bench.cr.yp.to
http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
http://eprint.iacr.org/2015/472.pdf
https://eprint.iacr.org/2008/318.pdf
https://eprint.iacr.org/2008/318.pdf
http://www.ams.org/journals/mcom/1996-65-216/S0025-5718-96-00775-2/S0025-5718-96-00775-2.pdf
http://www.ams.org/journals/mcom/1996-65-216/S0025-5718-96-00775-2/S0025-5718-96-00775-2.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
https://ianix.com/

BIBLIOGRAPHY 179

[BS08] Bhaskar Biswas and Nicolas Sendrier. “McEliece cryptosystem imple-
mentation: theory and practice”. In Post-quantum Cryptography, ed. by
Johannes Buchmann and Jintai Ding, Vol. 5299, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2008, pages 47–62 (cit. on
pp. 20, 22, 23).

[BS12] Daniel J. Bernstein and Peter Schwabe. “NEON crypto”. In Crypto-
graphic Hardware and Embedded Systems—CHES 2012, ed. by Em-
manuel Prouff and Patrick Schaumont, Vol. 7428, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2012, pages 320–339. https
://cr.yp.to/highspeed/neoncrypto-20120320.pdf (cit. on pp. 21,
91, 92, 94, 95, 97, 100, 101, 140).

[BSP+05] Martin Boesgaard, Ove Scavenius, Thomas Pedersen, Thomas Chris-
tensen, and Erik Zenner. “Badger—a fast and provably secure MAC”. In
Applied Cryptography and Network Security, Vol. 3531, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pages 176–191.
http://eprint.iacr.org/2004/319.pdf (cit. on p. 66).

[Can01] Ran Canetti. “Universally composable security: a new paradigm for cryp-
tographic protocols”. In 42nd Annual Symposium on Foundations of
Computer Science, IEEE, 2001, pages 136–145. https://eprint.iac
r.org/2000/067.pdf (cit. on pp. 79, 82).

[Can89] David G. Cantor. “On arithmetical algorithms over finite fields”. In Jour-
nal of Combinatorial Theory, Series A Vol. 50,2 (1989), pages 285–300
(cit. on p. 11).

[CCN+12] Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang.
“Solving quadratic equations with XL on parallel architectures”. In Cryp-
tographic Hardware and Embedded Systems—CHES 2012, ed. by Em-
manuel Prouff and Patrick Schaumont, Vol. 7428, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2012, pages 356–373. http:/
/www.iacr.org/archive/ches2012/74280353/74280353.pdf (cit. on
p. 3).

[Cer00a] Certicom Research. “SEC 2: recommended elliptic curve domain pa-
rameters, version 1.0”. 2000. http://www.secg.org/SEC2-Ver-1.0.pd
f (cit. on pp. 106, 109).

[Cer00b] Certicom Research. “SEC 1: elliptic curve cryptography, version 1.0”.
2000. http://www.secg.org/SEC1-Ver-1.0.pdf (cit. on pp. 109, 110).

[Cer09] Certicom Research. “SEC 1: elliptic curve cryptography, version 2.0”.
2009. http://www.secg.org/sec1-v2.pdf (cit. on pp. 109, 110).

[Cer10] Certicom Research. “SEC 2: recommended elliptic curve domain param-
eters, version 2.0”. 2010. http://www.secg.org/sec2-v2.pdf (cit. on
pp. 109, 119, 137).

https://cr.yp.to/highspeed/neoncrypto-20120320.pdf
https://cr.yp.to/highspeed/neoncrypto-20120320.pdf
http://eprint.iacr.org/2004/319.pdf
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2000/067.pdf
http://www.iacr.org/archive/ches2012/74280353/74280353.pdf
http://www.iacr.org/archive/ches2012/74280353/74280353.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC1-Ver-1.0.pdf
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf

180 BIBLIOGRAPHY

[CF01] Ran Canetti and Marc Fischlin. “Universally composable commitments”.
In Advances in Cryptology—CRYPTO 2001, Vol. 2139, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2001, pages 19–40. http
://www.iacr.org/archive/crypto2001/21390019.pdf (cit. on p. 79).

[CFN+14] Stephen Checkoway, Matthew Fredrikson, Ruben Niederhagen, Adam
Everspaugh, Matthew Green, Tanja Lange, Thomas Ristenpart, Daniel
J. Bernstein, Jake Maskiewicz, and Hovav Shacham. “On the practical
exploitability of Dual EC in TLS implementations”. In 23rd USENIX
Security Symposium (USENIX Security 14), San Diego, CA: USENIX
Association, 2014. https://projectbullrun.org/dual-ec/index.ht
ml (cit. on pp. 108, 111).

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. “How to
achieve a McEliece-based digital signature scheme”. In Advances in
Cryptology—ASIACRYPT 2001, ed. by Colin Boyd, Vol. 2248, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2001, pages
157–174. http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.p
df (cit. on pp. 36, 37).

[Cho15] Tung Chou. “Sandy2x: new Curve25519 speed records”. In Selected Areas
in Cryptography, ed. by Antoine Joux and Amr M. Youssef, Vol. 8781,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2015,
pages 145–160. https://eprint.iacr.org/2015/943.pdf (cit. on
pp. 3, 23, 140).

[Cho16] Tung Chou. “Qcbits: constant-time small-key code-based cryptography”.
2016. http://www.win.tue.nl/~tchou/papers/qcbits.pdf (cit. on
p. 3).

[CHS14] Craig Costello, Hüseyin Hisil, and Benjamin Smith. “Faster com-
pact diffie-hellman: endomorphisms on the x-line”. In Advances in
Cryptology—EUROCRYPT 2014, ed. by Phong Q. Nguyen and Elis-
abeth Oswald, Vol. 8441, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2014, pages 183–200. https://eprint.iacr.org/2
013/692.pdf (cit. on p. 92).

[CKP+00] Nicolas Tadeusz Courtois, Alexnader Klimov, Jacques Patarin, and
Adi Shamir. “Efficient algorithms for solving overdefined systems
of multivariate polynomial equations”. In Advances in Cryptology—
EUROCRYPT 2000, ed. by Bart Preneel, Vol. 1807, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2000, pages 392–407. ht
tp://www.minrank.org/xlfull.pdf (cit. on pp. 151, 152).

[CKP+05] Nam Su Chang, Chang Han Kim, Young-Ho Park, and Jongin Lim.
“A non-redundant and efficient architecture for Karatsuba-Ofman algo-
rithm”. In Information Security, ed. by Jianying Zhou, Javier Lopez,
Robert H. Deng, and Feng Bao, Vol. 3650, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, pages 288–299 (cit. on p. 58).

http://www.iacr.org/archive/crypto2001/21390019.pdf
http://www.iacr.org/archive/crypto2001/21390019.pdf
https://projectbullrun.org/dual-ec/index.html
https://projectbullrun.org/dual-ec/index.html
http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.pdf
http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.pdf
https://eprint.iacr.org/2015/943.pdf
http://www.win.tue.nl/~tchou/papers/qcbits.pdf
https://eprint.iacr.org/2013/692.pdf
https://eprint.iacr.org/2013/692.pdf
http://www.minrank.org/xlfull.pdf
http://www.minrank.org/xlfull.pdf

BIBLIOGRAPHY 181

[CO15] Tung Chou and Claudio Orlandi. “The simplest protocol for oblivi-
ous transfer”. In Progress in Cryptology—LATINCRYPT 2015, ed. by
Kristin E. Lauter and Francisco Rodríguez-Henríquez, Vol. 9230, Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2015, pages
40–58. http://eprint.iacr.org/2015/267.pdf (cit. on p. 3).

[Cop94] Don Coppersmith. “Solving homogeneous linear equations over GF(2)
via block Wiedemann algorithm”. In Mathematics of Computation
Vol. 62,205 (1994), pages 333–350. http://citeseerx.ist.psu.edu
/viewdoc/download?doi=10.1.1.353.3509&rep=rep1&type=pdf (cit.
on pp. 152, 153, 155).

[Cou03] Nicolas T. Courtois. “Higher order correlation attacks, XL algorithm and
cryptanalysis of Toyocrypt”. In Information Security and Cryptology—
ICISC 2002, ed. by Pil Lee and Chae Lim, Vol. 2587, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2003, pages 182–199. ht
tp://eprint.iacr.org/2002/087.pdf (cit. on p. 152).

[CP02] Nicolas Tadeusz Courtois and Josef Pieprzyk. “Cryptanalysis of
block ciphers with overdefined systems of equations”. In Advances in
Cryptology—ASIACRYPT 2002, ed. by Yuliang Zheng, Vol. 2501, Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2002, pages
267–287. http://iacr.org/archive/asiacrypt2002/25010267/2501
0267.pdf (cit. on p. 151).

[CS09] Neil Costigan and Peter Schwabe. “Fast elliptic-curve cryptogra-
phy on the Cell Broadband Engine”. In Progress in Cryptology—
AFRICACRYPT 2009, ed. by Bart Preneel. Vol. 5580, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2009, pages 368–385. htt
ps://cryptojedi.org/papers/celldh-20090331.pdf (cit. on pp. 91,
92, 140).

[DHH+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter,
Christof Paar, Ana Helena Sánchez, and Peter Schwabe. “High-speed
Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers”. In Designs,
Codes and Cryptography Vol. 77,2 (2015). http://link.springer.com/
article/10.1007/s10623-015-0087-1/fulltext.html (cit. on pp. 91,
140).

[Die04] Claus Diem. “The XL-algorithm and a conjecture from commutative al-
gebra”. In Advances in Cryptology—ASIACRYPT 2004, ed. by Pil Joong
Lee, Vol. 3329, Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2004, pages 323–337. http://www.math.uni-leipzig.de/MI/
diem/preprints/xl.ps (cit. on p. 152).

[DNO08] Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. “Essentially
optimal universally composable oblivious transfer”. In Information Se-
curity and Cryptology—ICISC 2008, ed. by Pil Joong Lee and Jung Hee
Cheon, Vol. 5461, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pages 318–335. https://eprint.iacr.org/2008/22
0.pdf (cit. on pp. 79, 82).

http://eprint.iacr.org/2015/267.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.3509&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.3509&rep=rep1&type=pdf
http://eprint.iacr.org/2002/087.pdf
http://eprint.iacr.org/2002/087.pdf
http://iacr.org/archive/asiacrypt2002/25010267/25010267.pdf
http://iacr.org/archive/asiacrypt2002/25010267/25010267.pdf
https://cryptojedi.org/papers/celldh-20090331.pdf
https://cryptojedi.org/papers/celldh-20090331.pdf
http://link.springer.com/article/10.1007/s10623-015-0087-1/fulltext.html
http://link.springer.com/article/10.1007/s10623-015-0087-1/fulltext.html
http://www.math.uni-leipzig.de/MI/diem/preprints/xl.ps
http://www.math.uni-leipzig.de/MI/diem/preprints/xl.ps
https://eprint.iacr.org/2008/220.pdf
https://eprint.iacr.org/2008/220.pdf

182 BIBLIOGRAPHY

[DSV13] Davide D’Angella, Chiara Valentina Schiavo, and Andrea Visconti.
“Tight upper bounds for polynomial multiplication”. In Proceedings
of the 6th WSEAS World Congress: Applied Computing Conference,
WSEAS Press, 2013. http://www.wseas.us/e-library/conference
s/2013/Nanjing/ACCIS/ACCIS-03.pdf (cit. on pp. 58, 65).

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. “A randomized
protocol for signing contracts”. In Communications of the ACM Vol. 28,6
(1985), pages 637–647. http://citeseerx.ist.psu.edu/viewdoc/dow
nload?doi=10.1.1.98.7448&rep=rep1&type=pdf (cit. on p. 79).

[Fau02] Jean-Charles Faugère. “A new efficient algorithm for computing Gröb-
ner bases without reduction to zero (F5)”. In International Symposium
on Symbolic and Algebraic Computation—ISSAC 2002, Association for
Computing Machinery, 2002, pages 75–83 (cit. on p. 151).

[Fau99] Jean-Charles Faugère. “A new efficient algorithm for computing Gröbner
bases (F4)”. In Journal of Pure and Applied Algebra Vol. 139,1–3 (1999),
pages 61–88. https://www.risc.jku.at/Groebner-Bases-Bibliogra
phy/gbbib_files/publication_221.pdf (cit. on pp. 151, 169).

[Fid72] Charles M. Fiduccia. “On obtaining upper bounds on the complexity of
matrix multiplication”. In Complexity of Computer Computations, ed.
by Raymond E. Miller and James W. Thatcher, Plenum Press, 1972,
pages 31–40 (cit. on p. 29).

[Fid73] Charles M. Fiduccia. “On the algebraic complexity of matrix multipli-
cation”. PhD thesis. Brown University, 1973 (cit. on p. 29).

[Fin11] Matthieu Finiasz. “Parallel-CFS—strengthening the CFS McEliece-
based signature scheme”. In Selected Areas in Cryptography, ed. by Alex
Biryukov, Guang Gong, and Douglas R. Stinson, Vol. 6544, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pages
159–170. https://www.rocq.inria.fr/secret/Matthieu.Finiasz/
research/2010/finiasz-sac10.pdf (cit. on p. 37).

[FLP+13] Pooya Farshim, Benoît Libert, Kenneth G. Paterson, and Elizabeth A.
Quaglia. “Robust encryption, revisited”. In Public-Key Cryptography, ed.
by Kaoru Kurosawa and Goichiro Hanaoka, Vol. 7778, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pages 352–368. ht
tp://eprint.iacr.org/2012/673.pdf (cit. on p. 78).

[Fog16] Agner Fog. “Instruction tables”. 2016. http://www.agner.org/optimi
ze/instruction_tables.pdf (cit. on pp. 59, 89, 97).

[FPP+12] Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël
Renault. “Improving the complexity of index calculus algorithms in ellip-
tic curves over binary fields”. In Advances in Cryptology—EUROCRYPT
2012, ed. by David Pointcheval and Thomas Johansson, Vol. 7237,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pages 27–44. http://www-polsys.lip6.fr/~jcf/Papers/euro2012.p
df (cit. on p. 152).

http://www.wseas.us/e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf
http://www.wseas.us/e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.7448&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.7448&rep=rep1&type=pdf
https://www.risc.jku.at/Groebner-Bases-Bibliography/gbbib_files/publication_221.pdf
https://www.risc.jku.at/Groebner-Bases-Bibliography/gbbib_files/publication_221.pdf
https://www.rocq.inria.fr/secret/Matthieu.Finiasz/research/2010/finiasz-sac10.pdf
https://www.rocq.inria.fr/secret/Matthieu.Finiasz/research/2010/finiasz-sac10.pdf
http://eprint.iacr.org/2012/673.pdf
http://eprint.iacr.org/2012/673.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www-polsys.lip6.fr/~jcf/Papers/euro2012.pdf
http://www-polsys.lip6.fr/~jcf/Papers/euro2012.pdf

BIBLIOGRAPHY 183

[FPR+15] Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Ekerå.
“Diversity and transparency for ECC”. 2015. http://csrc.nist.gov/
groups/ST/ecc-workshop-2015/papers/session4-flori-jean-pier
re.pdf (cit. on pp. 136, 139).

[FS10] Luca De Feo and Éric Schost. “transalpyne: a language for automatic
transposition”. 2010. http://www.prism.uvsq.fr/~dfl/talks/plmms
-08-07-10.pdf (cit. on p. 30).

[GG96] Joachim von zur Gathen and Jürgen Gerhard. “Arithmetic and factor-
ization of polynomials over F2 (extended abstract)”. In Proceedings of
the 1996 international symposium on symbolic and algebraic computa-
tion (ISSAC ’96), ed. by Erwin Engeler, B. F. Caviness, and Yagati N.
Lakshman, Association for Computing Machinery, 1996, pages 1–9 (cit.
on p. 11).

[GM00] Steven D. Galbraith and James McKee. “The probability that the num-
ber of points on an elliptic curve over a finite field is prime”. In Journal
of the London Mathematical Society Vol. 62,3 (2000), pages 671–684. h
ttps://www.math.auckland.ac.nz/~sgal018/cm.pdf (cit. on p. 113).

[GM10] Shuhong Gao and Todd Mateer. “Additive fast Fourier transforms over
finite fields”. In IEEE Transactions on Information Theory Vol. 56,
(2010), pages 6265–6272. http://www.math.clemson.edu/~sgao/pu
b.html (cit. on pp. 11–13, 62).

[Gra08] Andrew Granville. “Smooth numbers: computational number theory
and beyond”. In Algorithmic Number Theory: Lattices, Number Fields,
Curves and Cryptography, Cambridge University Press, 2008, pages 267–
323. http://en.scientificcommons.org/43534098 (cit. on p. 114).

[GS06] Joachim von zur Gathen and Jamshid Shokrollahi. “Fast arithmetic for
polynomials over F2 in hardware”. In 2006 IEEE Information Theory
Workshop—ITW ’06, IEEE, 2006, pages 107–111 (cit. on p. 58).

[GT07] Pierrick Gaudry and Emmanuel Thomé. “The mpFq library and imple-
menting curve-based key exchanges”. In SPEED: software performance
enhancement for encryption and decryption, 2007, pages 49–64. http:/
/www.loria.fr/~gaudry/papers.en.html (cit. on p. 140).

[Gue13] Shay Gueron. “AES-GCM software performance on the current high end
CPUs as a performance baseline for CAESAR”. 2013. http://2013.di
ac.cr.yp.to/slides/gueron.pdf (cit. on p. 59).

[Hal07] Shai Halevi. “Invertible universal hashing and the TET encryption
mode”. In Advances in Cryptology—CRYPTO 2007, ed. by Alfred
Menezes, Vol. 4622, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2007, pages 412–429. eprint: https://eprint.iacr.org/
2007/014.pdf (cit. on p. 66).

http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session4-flori-jean-pierre.pdf
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session4-flori-jean-pierre.pdf
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session4-flori-jean-pierre.pdf
http://www.prism.uvsq.fr/~dfl/talks/plmms-08-07-10.pdf
http://www.prism.uvsq.fr/~dfl/talks/plmms-08-07-10.pdf
https://www.math.auckland.ac.nz/~sgal018/cm.pdf
https://www.math.auckland.ac.nz/~sgal018/cm.pdf
http://www.math.clemson.edu/~sgao/pub.html
http://www.math.clemson.edu/~sgao/pub.html
http://en.scientificcommons.org/43534098
http://www.loria.fr/~gaudry/papers.en.html
http://www.loria.fr/~gaudry/papers.en.html
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://2013.diac.cr.yp.to/slides/gueron.pdf
https://eprint.iacr.org/2007/014.pdf
https://eprint.iacr.org/2007/014.pdf

184 BIBLIOGRAPHY

[HG12] Stefan Heyse and Tim Güneysu. “Towards one cycle per bit asymmetric
encryption: code-based cryptography on reconfigurable hardware”. In
Cryptographic Hardware and Embedded Systems—CHES 2012, ed. by
Emmanuel Prouff and Patrick Schaumont, Vol. 7428, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pages 340–355 (cit.
on pp. 22, 24).

[HK97] Shai Halevi and Hugo Krawczyk. “MMH: software message authentica-
tion in the Gbit/second rates”. In Fast Software Encryption, ed. by Eli
Biham, Vol. 1267, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1997, pages 172–189. http://www.research.ibm.com/peo
ple/s/shaih/pubs/mmh.html (cit. on p. 66).

[HL10] Carmit Hazay and Yehuda Lindell. “Efficient Secure Two-Party
Protocols—Techniques and Constructions”. Information Security and
Cryptography. Springer Berlin Heidelberg, 2010 (cit. on pp. 79, 83).

[HMG13] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. “Smaller Keys
for Code-Based Cryptography: QC-MDPC McEliece Implementations
on Embedded Devices”. In Cryptographic Hardware and Embedded
Systems—CHES 2013, ed. by Guido Bertoni and Jean-Sébastien Coron,
Vol. 8086, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2013, pages 273–292. https://eprint.iacr.org/2015/425.pdf
(cit. on pp. 39, 40, 43, 44, 46, 55).

[HP08] Helena Handschuh and Bart Preneel. “Key-recovery attacks on univer-
sal hash function based MAC algorithms”. In Advances in Cryptology—
CRYPTO 2008, ed. by David Wagner, Vol. 5157, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2008, pages 144–161. https:
//securewww.esat.kuleuven.be/cosic/publications/article-115
0.pdf (cit. on p. 66).

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. “NTRU: a
ring-based public key cryptosystem”. In Algorithmic Number Theory,
Vol. 1423, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 1998, pages 267–288 (cit. on p. 2).

[HSS+15] Michael Hutter, Jürgen Schilling, Peter Schwabe, and Wolfgang Wieser.
“NaCl’s crypto_box in hardware”. In Cryptographic Hardware and Em-
bedded Systems—CHES 2015, ed. by Tim Güneysu and Helena Hand-
schuh, Vol. 9293, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2015, pages 81–101. https://cryptojedi.org/papers/na
clhw-20150616.pdf (cit. on p. 140).

[HVP10] Jens Hermans, Frederik Vercauteren, and Bart Preneel. “Speed records
for NTRU”. In Topics in cryptology—CT-RSA 2010, ed. by Josef
Pieprzyk, Vol. 5985, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pages 73–88. http://homes.esat.kuleuven.be/~fv
ercaut/papers/ntru_gpu.pdf (cit. on p. 24).

http://www.research.ibm.com/people/s/shaih/pubs/mmh.html
http://www.research.ibm.com/people/s/shaih/pubs/mmh.html
https://eprint.iacr.org/2015/425.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1150.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1150.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-1150.pdf
https://cryptojedi.org/papers/naclhw-20150616.pdf
https://cryptojedi.org/papers/naclhw-20150616.pdf
http://homes.esat.kuleuven.be/~fvercaut/papers/ntru_gpu.pdf
http://homes.esat.kuleuven.be/~fvercaut/papers/ntru_gpu.pdf

BIBLIOGRAPHY 185

[HWC+08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Daw-
son. “Twisted Edwards curves revisited”. In Advances in Cryptology—
ASIACRYPT 2008, Vol. 5350, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, pages 326–343. http://iacr.org/
archive/asiacrypt2008/53500329/53500329.pdf (cit. on pp. 79, 85,
101, 103).

[IEE00] Institute of Electrical and Electronics Engineers. “IEEE 1363-2000: stan-
dard specifications for public key cryptography”. 2000. http://groupe
r.ieee.org/groups/1363/P1363/draft.html (cit. on pp. 106, 109,
119).

[IHT06] José Luis Imaña, Román Hermida, and Francisco Tirado. “Low-
complexity bit-parallel multipliers based on a class of irreducible pen-
tanomials”. In IEEE Transactions on Very Large Scale Integration
(VLSI) Systems Vol. 14,12 (2006), pages 1388–1393 (cit. on p. 60).

[IKN+03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Extending
oblivious transfers efficiently”. In Advances in Cryptology—CRYPTO
2003, ed. by Dan Boneh, Vol. 2729, Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2003, pages 145–161. http://iacr.o
rg/archive/crypto2003/27290145/27290145.pdf (cit. on p. 79).

[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. “Breaking and
repairing GCM security proofs”. In Advances in Cryptology—CRYPTO
2012, ed. by Reihaneh Safavi-Naini and Ran Canetti, Vol. 7417, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pages 31–
49. https://eprint.iacr.org/2012/438.pdf (cit. on p. 65).

[IR89] Russell Impagliazzo and Steven Rudich. “Limits on the provable con-
sequences of one-way permutations”. In Proceedings of the 21st annual
ACM symposium on theory of computing, Association for Computing
Machinery, 1989, pages 44–61 (cit. on p. 79).

[Jab01] A. Al Jabri. “A statistical decoding algorithm for general linear block
codes”. In Cryptography and Coding, ed. by Bahram Honary, Vol. 2260,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001,
pages 1–8 (cit. on p. 43).

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. “Practical invalid
curve attacks on TLS-ECDH”. In ESORICS 2015, 2015. https://www.
nds.rub.de/research/publications/ESORICS15/ (cit. on p. 111).

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Klaas Lenstra,
Emmanuel Thomé, Joppe Willem Bos, Pierrick Gaudry, Alexander
Kruppa, Peter Lawrence Montgomery, Dag Arne Osvik, Herman Te
Riele, Andrey Timofeev, and Paul Zimmermann. “Factorization of a
768-bit rsa modulus”. In Advances in Cryptology—CRYPTO 2010, ed.
by Tal Rabin, Vol. 6223, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, pages 333–350. https://infoscience.epfl.
ch/record/164552/files/NPDF-44.pdf (cit. on pp. 159, 169).

http://iacr.org/archive/asiacrypt2008/53500329/53500329.pdf
http://iacr.org/archive/asiacrypt2008/53500329/53500329.pdf
http://grouper.ieee.org/groups/1363/P1363/draft.html
http://grouper.ieee.org/groups/1363/P1363/draft.html
http://iacr.org/archive/crypto2003/27290145/27290145.pdf
http://iacr.org/archive/crypto2003/27290145/27290145.pdf
https://eprint.iacr.org/2012/438.pdf
https://www.nds.rub.de/research/publications/ESORICS15/
https://www.nds.rub.de/research/publications/ESORICS15/
https://infoscience.epfl.ch/record/164552/files/NPDF-44.pdf
https://infoscience.epfl.ch/record/164552/files/NPDF-44.pdf

186 BIBLIOGRAPHY

[Kel03] John Kelsey. “Choosing a DRBG algorithm”. 2003? https://github.c
om/matthewdgreen/nistfoia/blob/master/6.4.2014%20production
/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf (cit. on
p. 108).

[KI01] Kazukuni Kobara and Hideki Imai. “Semantically secure McEliece
public-key cryptosystems—conversions for McEliece PKC”. In Public
Key Cryptography, ed. by Kwangjo Kim, Vol. 1992, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2001, pages 19–35 (cit.
on p. 33).

[Kil88] Joe Kilian. “Founding cryptography on oblivious transfer”. In Proceed-
ings of the 20th annual ACM symposium on theory of computing, Asso-
ciation for Computing Machinery, 1988, pages 20–31. https://gnunet.
org/sites/default/files/oblivious_transfer.pdf (cit. on p. 77).

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “Actively secure
OT extension with optimal overhead”. In Advances in Cryptology—
CRYPTO 2015, ed. by Rosario Gennaro and Matthew Robshaw.
Vol. 9215, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2015, pages 724–741. http://eprint.iacr.org/2015/546.pdf
(cit. on p. 79).

[KR11] Ted Krovetz and Philip Rogaway. “The software performance of
authenticated-encryption modes”. In Fast Software Encryption, ed. by
Antoine Joux, Vol. 6733, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pages 306–327. http://www.cs.ucdavis.edu
/~rogaway/papers/ae.pdf (cit. on p. 59).

[Kro07] Ted Krovetz. “Message authentication on 64-bit architectures ”. In Se-
lected Areas in Cryptography, ed. by Eli Biham and Amr M. Youssef,
Vol. 4356, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2007, pages 327–341. https://eprint.iacr.org/2006/037.pdf
(cit. on pp. 57, 66).

[KS09] Emilia Käsper and Peter Schwabe. “Faster and timing-attack resistant
AES-GCM”. In Cryptographic Hardware and Embedded Systems—CHES
2009, ed. by Christophe Clavier and Kris Gaj, Vol. 5747, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2009, pages 1–17. ht
tps://eprint.iacr.org/2009/129.pdf (cit. on pp. 20, 57–59).

[Lar14] Enrique Larraia. “Extending oblivious transfer efficiently, or - how to get
active security with constant cryptographic overhead”. In IACR Cryp-
tology ePrint Archive (2014). https://eprint.iacr.org/2014/692.p
df (cit. on p. 79).

[Laz83] Daniel Lazard. “Gröbner-bases, Gaussian elimination and resolution of
systems of algebraic equations”. In Computer Algebra—EUROCAL ’83,
ed. by J. A. van Hulzen, Vol. 162, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1983, pages 146–156 (cit. on p. 151).

https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.12%20Choosing%20a%20DRBG%20Algorithm.pdf
https://gnunet.org/sites/default/files/oblivious_transfer.pdf
https://gnunet.org/sites/default/files/oblivious_transfer.pdf
http://eprint.iacr.org/2015/546.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
https://eprint.iacr.org/2006/037.pdf
https://eprint.iacr.org/2009/129.pdf
https://eprint.iacr.org/2009/129.pdf
https://eprint.iacr.org/2014/692.pdf
https://eprint.iacr.org/2014/692.pdf

BIBLIOGRAPHY 187

[LC14] Brian LaMacchia and Craig Costello. “Deterministic generation of ellip-
tic curves (a.k.a. “NUMS” curves)”. 2014. https://www.ietf.org/pro
ceedings/90/slides/slides-90-cfrg-5.pdf (cit. on p. 133).

[LM10] Manfred Lochter and Johannes Merkle. “RFC 5639: elliptic curve cryp-
tography (ECC) Brainpool standard curves and curve generation”. 2010.
https://tools.ietf.org/html/rfc5639 (cit. on pp. 125, 126, 134).

[LM13] Adam Langley and Andrew Moon. “Implementations of a fast elliptic-
curve digital signature algorithm”. 2013. https://github.com/floody
berry/ed25519-donna (cit. on pp. 92, 93, 101, 104, 140).

[LMS+14] Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, and Torsten
Schütze. “Requirements for standard elliptic curves”. 2014. http://ww
w.ecc-brainpool.org/20141001_ECCBrainpool_PositionPaper.pdf
(cit. on p. 135).

[LMS04] Florian Luca, David Jose Mireles, and Igor E. Shparlinski. “MOV attack
in various subgroups on elliptic curves”. In Illinois Journal of Mathemat-
ics Vol. 48,3 (July 2004), pages 1041–1052. https://projecteuclid.o
rg/euclid.ijm/1258131069 (cit. on p. 114).

[LS12a] Grégory Landais and Nicolas Sendrier. “CFS software implementation”.
In IACR Cryptology ePrint Archive (2012). See also newer version
[LS12b]. https://eprint.iacr.org/2012/132.pdf.

[LS12b] Grégory Landais and Nicolas Sendrier. “Implementing CFS”. In Progress
in cryptology—Indocrypt 2012, ed. by Steven Galbraith and Mridul
Nandi, Vol. 7668, Lecture Notes in Computer Science. See also older
version [LS12a]. Springer Berlin Heidelberg, 2012, pages 474–488 (cit.
on pp. 36–38).

[LS12c] Patrick Longa and Francesco Sica. “Four-dimensional Gallant-
Lambert-Vanstone scalar multiplication”. In Advances in Cryptology—
ASIACRYPT 2012, ed. by Xiaoyun Wang and Kazue Sako, Vol. 7658,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pages 718–739. https://eprint.iacr.org/2011/608.pdf (cit. on
p. 92).

[LST12] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. “Tweak-
able blockciphers with beyond birthday-bound security”. In Advances
in Cryptology—CRYPTO 2012, ed. by Reihaneh Safavi-Naini and Ran
Canetti, Vol. 7417, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pages 14–30. http://www.iacr.org/archive/crypt
o2012/74170014/74170014.pdf (cit. on p. 66).

[Lup56] O. B. Lupanov. “On rectifier and contact-rectifier circuits”. In Doklady
Akademii Nauk SSSR Vol. 111,1 (1956), pages 1171–1174 (cit. on p. 29).

[LW15] Manfred Lochter and Andreas Wiemers. “Twist insecurity”. In IACR
Cryptology ePrint Archive (2015). https://eprint.iacr.org/2015/5
77.pdf (cit. on p. 112).

https://www.ietf.org/proceedings/90/slides/slides-90-cfrg-5.pdf
https://www.ietf.org/proceedings/90/slides/slides-90-cfrg-5.pdf
https://tools.ietf.org/html/rfc5639
https://github.com/floodyberry/ed25519-donna
https://github.com/floodyberry/ed25519-donna
http://www.ecc-brainpool.org/20141001_ECCBrainpool_PositionPaper.pdf
http://www.ecc-brainpool.org/20141001_ECCBrainpool_PositionPaper.pdf
https://projecteuclid.org/euclid.ijm/1258131069
https://projecteuclid.org/euclid.ijm/1258131069
https://eprint.iacr.org/2012/132.pdf
https://eprint.iacr.org/2011/608.pdf
http://www.iacr.org/archive/crypto2012/74170014/74170014.pdf
http://www.iacr.org/archive/crypto2012/74170014/74170014.pdf
https://eprint.iacr.org/2015/577.pdf
https://eprint.iacr.org/2015/577.pdf

188 BIBLIOGRAPHY

[Mac16] Francis Sowerby Macaulay. “The Algebraic Theory of Modular Systems”.
Cambridge Tracts in Mathematics and Mathematical Physics 19. Cam-
bridge University Press, 1916 (cit. on p. 152).

[MB72] Robert T. Moenck and Allan Borodin. “Fast modular transforms via
division”. In 13th annual symposium on switching and automata theory,
Note: newer version, not a superset, in [BM74]. IEEE Computer Society,
1972, pages 90–96.

[MC14] Eric M. Mahé and Jean-Marie Chauvet. “Fast GPGPU-based elliptic
curve scalar multiplication”. In IACR Cryptology ePrint Archive (2014).
https://eprint.iacr.org/2014/198.pdf (cit. on p. 140).

[McE78] Robert J. McEliece. “A public-key cryptosystem based on algebraic cod-
ing theory”. JPL DSN Progress Report. 1978. http://ipnpr.jpl.nasa
.gov/progress_report2/42-44/44N.PDF (cit. on pp. 2, 19, 39, 42).

[MDK+10] Wael Said Abd Elmageed Mohamed, Jintai Ding, Thorsten Klein-
jung, Stanislav Bulygin, and Johannes Buchmann. “PWXL: a parallel
Wiedemann-XL algorithm for solving polynomial equations over GF(2)”.
In International Conference on Symbolic Computation and Cryptogra-
phy, ed. by Carlos Cid and Jean-Charles Faugère, 2010, pages 89–100. ht
tp://scc2010.rhul.ac.uk/scc2010-proceedings.pdf#page=89 (cit.
on pp. 152, 169).

[Mer14] Johannes Merkle. “Re: [Cfrg] ECC reboot (Was: When’s the decision?)”
2014. https://www.ietf.org/mail-archive/web/cfrg/current/msg
05353.html (cit. on p. 129).

[MG14a] Ingo von Maurich and Tim Güneysu. “Lightweight code-based cryptog-
raphy: QC-MDPC McEliece encryption on reconfigurable devices”. In
Proceedings of the conference on Design, Automation & Test in Europe,
ed. by Gerhard Fettweis and Wolfgang Nebel, European Design and Au-
tomation Association, 2014, pages 1–6. https://www.sha.rub.de/med
ia/sh/veroeffentlichungen/2014/02/11/Lightweight_Code-based
_Cryptography.pdf (cit. on pp. 39, 40, 43, 44, 46, 55).

[MG14b] Ingo von Maurich and Tim Güneysu. “Towards side-channel resistant
implementataons of QC-MDPC McEliece encryption on constrained de-
vices”. In Post-quantum Cryptography, ed. by Michele Mosca, Vol. 8772,
Lecture Notes in Computer Science. Springer and Springer, 2014, pages
266–282. http://ei.rub.de/media/sh/veroeffentlichungen/2014
/07/17/Side-Channel_Resistant_QC-MDPC_McEliece.pdf (cit. on
pp. 39–41, 43–46, 55).

[MHG16] Ingo von Maurich, Lukas Heberle, and Tim Güneysu. “IND-CCA se-
cure hybrid encryption from QC-MDPC Niederreiter”. In Post-quantum
Cryptography, ed. by Tsuyoshi Takagi, Vol. 9606, Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2016, pages 1–17. http://pqc
rypto.eu.org/docs/hybrid_mdpc_niederreiter.pdf (cit. on pp. 39–
41, 43–46, 55).

https://eprint.iacr.org/2014/198.pdf
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://scc2010.rhul.ac.uk/scc2010-proceedings.pdf#page=89
http://scc2010.rhul.ac.uk/scc2010-proceedings.pdf#page=89
https://www.ietf.org/mail-archive/web/cfrg/current/msg05353.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg05353.html
https://www.sha.rub.de/media/sh/veroeffentlichungen/2014/02/11/Lightweight_Code-based_Cryptography.pdf
https://www.sha.rub.de/media/sh/veroeffentlichungen/2014/02/11/Lightweight_Code-based_Cryptography.pdf
https://www.sha.rub.de/media/sh/veroeffentlichungen/2014/02/11/Lightweight_Code-based_Cryptography.pdf
http://ei.rub.de/media/sh/veroeffentlichungen/2014/07/17/Side-Channel_Resistant_QC-MDPC_McEliece.pdf
http://ei.rub.de/media/sh/veroeffentlichungen/2014/07/17/Side-Channel_Resistant_QC-MDPC_McEliece.pdf
http://pqcrypto.eu.org/docs/hybrid_mdpc_niederreiter.pdf
http://pqcrypto.eu.org/docs/hybrid_mdpc_niederreiter.pdf

BIBLIOGRAPHY 189

[MM12] Seiichi Matsuda and Shiho Moriai. “Lightweight cryptography for the
cloud: exploit the power of bitslice implementation”. In Cryptographic
Hardware and Embedded Systems—CHES 2012, ed. by Emmanuel Prouff
and Patrick Schaumont, Vol. 7428, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pages 408–425. http://www.iacr.or
g/archive/ches2012/74280406/74280406.pdf (cit. on p. 21).

[MMD+08] Mohamed Saied Emam Mohamed, Wael Said Abd Elmageed Mohamed,
Jintai Ding, and Johannes Buchmann. “MXL2: solving polynomial equa-
tions over GF(2) using an improved mutant strategy”. In Post-Quantum
Cryptography, ed. by Johannes Buchmann and Jintai Ding, Vol. 5299,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pages 203–215. https://www-old.cdc.informatik.tu-darmstadt.de
/reports/reports/MXL2.pdf (cit. on p. 170).

[MN07] Mitsuru Matsui and Junko Nakajima. “On the power of bitslice imple-
mentation on Intel Core2 processor”. In Cryptographic Hardware and
Embedded Systems—CHES 2007, ed. by Pascal Paillier and Ingrid Ver-
bauwhede, Vol. 4727, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007, pages 121–134. http://www.iacr.org/arch
ive/ches2007/47270121/47270121.pdf (cit. on p. 20).

[MOG15] Ingo von Maurich, Tobias Oder, and Tim Güneysu. “Implementing QC-
MDPC McEliece encryption”. In ACM Transactions on Embedded Com-
puting Systems Vol. 14,3 (2015) (cit. on pp. 39–41, 43–46, 49, 55).

[Moh01] Tzuong-Tsieng Moh. “On the method of XL and its inefficiency to TTM”.
In IACR Cryptology ePrint Archive (2001). http://eprint.iacr.org
/2001/047.ps (cit. on p. 152).

[Mon95] Peter Lawrence Montgomery. “A block Lanczos algorithm for finding de-
pendencies over GF(2)”. In Advances in Cryptology—EUROCRYPT ’95,
ed. by Louis Guillou and Jean-Jacques Quisquater, Vol. 921, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1995, pages 106–
120 (cit. on p. 152).

[Moo14a] Dustin Moody. “Development of FIPS 186: digital signatures (and el-
liptic curves)”. 2014. http://csrc.nist.gov/groups/ST/crypto-revi
ew/documents/FIPS_186_and_Elliptic_Curves_052914.pdf (cit. on
p. 111).

[Moo14b] Andrew “Floodberry” Moon. “Optimized implementations of Poly1305,
a fast message-authentication-code”. 2014. https://github.com/floo
dyberry/poly1305-opt (cit. on p. 57).

[Moo15] Andrew “Floodyberry” Moon. “Implementations of a fast elliptic-curve
digital signature algorithm”. accessed 16 March 2015. 2015. https://g
ithub.com/floodyberry/ed25519-donna (cit. on p. 89).

http://www.iacr.org/archive/ches2012/74280406/74280406.pdf
http://www.iacr.org/archive/ches2012/74280406/74280406.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/MXL2.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/MXL2.pdf
http://www.iacr.org/archive/ches2007/47270121/47270121.pdf
http://www.iacr.org/archive/ches2007/47270121/47270121.pdf
http://eprint.iacr.org/2001/047.ps
http://eprint.iacr.org/2001/047.ps
http://csrc.nist.gov/groups/ST/crypto-review/documents/FIPS_186_and_Elliptic_Curves_052914.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/FIPS_186_and_Elliptic_Curves_052914.pdf
https://github.com/floodyberry/poly1305-opt
https://github.com/floodyberry/poly1305-opt
https://github.com/floodyberry/ed25519-donna
https://github.com/floodyberry/ed25519-donna

190 BIBLIOGRAPHY

[MR02] Sean Murphy and Matthew John Barton Robshaw. “Essential alge-
braic structure within the AES”. In Advances in Cryptology – CRYPTO
2002, ed. by Moti Yung, Vol. 2442, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002, pages 1–16. https://www.iacr.org/
archive/crypto2002/24420001/24420001.pdf (cit. on p. 151).

[MTS+13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo
S. L. M. Barreto. “MDPC-McEliece: New McEliece variants from mod-
erate density parity-check codes”. In IEEE International Symposium on
Information Theory (2013), pages 2069–2073. https://eprint.iacr.o
rg/2012/409.pdf (cit. on pp. 39–43, 51, 52, 54, 55).

[Nie07] Jesper Buus Nielsen. “Extending oblivious transfers efficiently - how
to get robustness almost for free”. In IACR Cryptology ePrint Archive
(2007). https://eprint.iacr.org/2007/215.pdf (cit. on p. 79).

[Nie12] Ruben Niederhagen. “Parallel Cryptanalysis”. PhD thesis. Eindhoven
University of Technology, 2012. http://polycephaly.org/thesis/in
dex.shtml (cit. on pp. 153, 160, 161).

[Nie86] Harald Niederreiter. “Knapsack-type cryptosystems and algebraic cod-
ing theory”. In Problems of Control and Information Theory Vol. 15,
(1986), pages 159–166 (cit. on pp. 19, 34, 39).

[NIS00] National Institute for Standards and Technology. “FIPS PUB 186-2:
Digital signature standard”. 2000. http://csrc.nist.gov/publicati
ons/fips/archive/fips186-2/fips186-2.pdf (cit. on pp. 106, 109,
110, 119).

[NIS13] National Institute for Standards and Technology. “FIPS PUB 186-4:
Digital signature standard (DSS)”. 2013. http://nvlpubs.nist.gov/n
istpubs/FIPS/NIST.FIPS.186-4.pdf (cit. on pp. 109, 129, 131, 137).

[NNO+12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. “A new approach to practical active-secure two-
party computation”. In Advances in Cryptology—CRYPTO 2012, ed. by
Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pages 681–700. ht
tps://eprint.iacr.org/2011/091.pdf (cit. on pp. 77, 79).

[NP01] Moni Naor and Benny Pinkas. “Efficient oblivious transfer protocols”.
In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, 2001, pages 448–457. http://dl.acm.org/citation.cfm?
id=365411.365502 (cit. on p. 79).

[NSA05] National Security Agency. “Suite B cryptography / cryptographic inter-
operability”. 2005. https://web.archive.org/web/20150724150910/
https://www.nsa.gov/ia/programs/suiteb_cryptography/ (cit. on
pp. 106, 109, 135).

https://www.iacr.org/archive/crypto2002/24420001/24420001.pdf
https://www.iacr.org/archive/crypto2002/24420001/24420001.pdf
https://eprint.iacr.org/2012/409.pdf
https://eprint.iacr.org/2012/409.pdf
https://eprint.iacr.org/2007/215.pdf
http://polycephaly.org/thesis/index.shtml
http://polycephaly.org/thesis/index.shtml
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://eprint.iacr.org/2011/091.pdf
https://eprint.iacr.org/2011/091.pdf
http://dl.acm.org/citation.cfm?id=365411.365502
http://dl.acm.org/citation.cfm?id=365411.365502
https://web.archive.org/web/20150724150910/https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://web.archive.org/web/20150724150910/https://www.nsa.gov/ia/programs/suiteb_cryptography/

BIBLIOGRAPHY 191

[OLA+13] Thomaz Oliveira, Julio López, Diego F. Aranha, and Francisco
Rodríguez-Henríquez. “Lambda coordinates for binary elliptic curves”.
In Cryptographic Hardware and Embedded Systems—CHES 2013, ed. by
Guido Bertoni and Jean-Sébastien Coron, Vol. 8086, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pages 311–330. htt
p://www.iacr.org/archive/ches2013/80860113/80860113.pdf (cit.
on pp. 23, 93).

[OLA+14] Thomaz Oliveira, Juilo López, Diego F. Aranha, and Francisco
Rodríguez-Henríquez. “Two is the fastest prime”. In Journal of Cryp-
tographic Engineering Vol. 4,1 (2014), pages 3–17. https://eprint.ia
cr.org/2013/131.pdf (cit. on p. 23).

[OS09] Raphael Overbeck and Nicolas Sendrier. “Code-based cryptography”.
In Post-quantum Cryptography, ed. by Daniel J. Bernstein, Johannes
Buchmann, and Erik Dahmen, Springer Berlin Heidelberg, 2009, pages
95–145 (cit. on pp. 35, 37).

[OSC10a] State Commercial Cryptography Administration (OSCCA), China.
“Public key cryptographic algorithm SM2 based on elliptic curves”.
Dec. 2010. http://www.oscca.gov.cn/UpFile/2010122214822692.
pdf (cit. on pp. 109, 117).

[OSC10b] State Commercial Cryptography Administration (OSCCA), China.
“Recommanded curve parameters for public key cryptographic algorithm
SM2 based on elliptic curves”. Dec. 2010. http://www.oscca.gov.cn/
UpFile/2010122214836668.pdf (cit. on pp. 109, 117).

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache attacks and
countermeasures: the case of AES”. In Topics in Cryptology – CT-RSA
2006, ed. by David Pointcheval, Vol. 3860, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pages 1–20. https://eprint
.iacr.org/2005/271.pdf (cit. on p. 8).

[Ove06] Raphael Overbeck. “Statistical Decoding Revisited”. In Information
Security and Privacy—ACISP 2006, ed. by Lynn Margaret Batten,
Vol. 4058, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2006, pages 283–294 (cit. on p. 43).

[Paa97] Christof Paar. “Optimized arithmetic for Reed–Solomon encoders”. 1997.
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/20
11/01/19/cnst.ps (cit. on p. 61).

[Pat75] Nicholas J. Patterson. “The algebraic decoding of Goppa codes”. In IEEE
Transactions on Information Theory Vol. 21,2 (1975), pages 203–207
(cit. on p. 36).

[Per12] Edoardo Persichetti. “Improving the efficiency of code-based cryptogra-
phy”. PhD thesis. 2012. http://persichetti.webs.com/publication
s (cit. on pp. 35, 39, 55).

http://www.iacr.org/archive/ches2013/80860113/80860113.pdf
http://www.iacr.org/archive/ches2013/80860113/80860113.pdf
https://eprint.iacr.org/2013/131.pdf
https://eprint.iacr.org/2013/131.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
https://eprint.iacr.org/2005/271.pdf
https://eprint.iacr.org/2005/271.pdf
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
http://persichetti.webs.com/publications
http://persichetti.webs.com/publications

192 BIBLIOGRAPHY

[Per13] Edoardo Persichetti. “Secure and Anonymous Hybrid Encryption from
Coding Theory”. In Post-quantum Cryptography, ed. by Philippe Ga-
borit, Vol. 7932, Lecture Notes in Computer Science. Springer and
Springer, 2013, pages 174–187. http://persichetti.webs.com/pub
lications (cit. on pp. 39, 55).

[Pet10] Christiane Peters. “Information-set decoding for linear codes over Fq”. In
Post-quantum Cryptography, ed. by Nicolas Sendrier, Vol. 6061, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, pages 81–
94. https:/eprint.iacr.org/2009/589.pdf (cit. on p. 22).

[PL07] Steffen Peter and Peter Langendörfer. “An efficient polynomial multi-
plier in GF(2m) and its application to ECC designs”. In Design, Au-
tomation and Test in Europe Conference and Exhibition - DATE 2007,
IEEE, 2007. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?i
snumber=4211749&arnumber=4211979&count=305&index=229 (cit. on
p. 58).

[PQ12] Christophe Petit and Jean-Jacques Quisquater. “On polynomial systems
arising from a weil descent”. In Advances in Cryptology—ASIACRYPT
2012, ed. by Xiaoyun Wang and Kazue Sako, Vol. 7658, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, pages 451–466.
http://www.iacr.org/archive/asiacrypt2012/76580446/76580446
.pdf (cit. on p. 93).

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A frame-
work for efficient and composable oblivious transfer”. In Advances in
Cryptology—CRYPTO 2008, ed. by David Wagner, Vol. 5157, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008, pages 554–
571. http://eprint.iacr.org/2007/348.pdf (cit. on p. 79).

[Rab81] Michael O. Rabin. “How to exchange secrets with oblivious transfer”. In
Technical Report TR-81, Aiken Computation Lab, Harvard University
(1981). https://eprint.iacr.org/2005/187 (cit. on p. 79).

[RK03] Francisco Rodríguez-Henríquez and Çetin Kaya Koç. “On fully parallel
Karatsuba multipliers for GF(2m)”. In Proceedings of the international
conference on computer science and technology, ed. by S. Sahni, Acta
Press, 2003, pages 405–410 (cit. on p. 58).

[RS62] John Barkley Rosser and Lowell Schoenfeld. “Approximate formulas for
some functions of prime numbers”. In Illinois Journal of Mathematics
Vol. 6,1 (1962), pages 64–94. https://projecteuclid.org/euclid.ij
m/1255631807 (cit. on p. 112).

[Sch15] Thomas Schneider. “Personal communication”. 2015 (cit. on p. 80).

[Sch77] Arnold Schönhage. “Schnelle Multiplikation von Polynomen über Kör-
pern der Charakteristik 2”. In Acta Informatica Vol. 7,4 (1977), pages
395–398 (cit. on p. 159).

http://persichetti.webs.com/publications
http://persichetti.webs.com/publications
https:/eprint.iacr.org/2009/589.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://www.iacr.org/archive/asiacrypt2012/76580446/76580446.pdf
http://www.iacr.org/archive/asiacrypt2012/76580446/76580446.pdf
http://eprint.iacr.org/2007/348.pdf
https://eprint.iacr.org/2005/187
https://projecteuclid.org/euclid.ijm/1255631807
https://projecteuclid.org/euclid.ijm/1255631807

BIBLIOGRAPHY 193

[Sco99] Michael Scott. “Re: NIST announces set of Elliptic Curves”. 1999. http
s://groups.google.com/forum/message/raw?msg=sci.crypt/mFMuk
SsORmI/FpbHDQ6hM_MJ (cit. on p. 123).

[Sem15] Igor A. Semaev. “New algorithm for the discrete logarithm problem on
elliptic curves”. In arXiv preprint arXiv:1504.01175 (2015). http://ar
xiv.org/abs/1504.01175 (cit. on p. 93).

[SG14] Pascal Sasdrich and Tim Güneysu. “Efficient elliptic-curve cryptography
using Curve25519 on reconfigurable devices”. In Reconfigurable Comput-
ing: Architectures, Tools, and Applications—ARC 2014, ed. by Diana
Goehringer, Marco Domenico Santambrogio, João M. P. Cardoso, and
Koen Bertels, Vol. 8405, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2014, pages 25–36. https://www.hgi.rub.de/medi
a/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.
pdf (cit. on p. 140).

[She59] Donald L. Shell. “A high-speed sorting procedure”. In Communications
of the ACM Vol. 2,7 (1959), pages 30–32 (cit. on p. 31).

[Sho01] Victor Shoup. “A proposal for an ISO standard for public key encryption
(version 2.1)”. 2001. http://www.shoup.net/papers (cit. on p. 35).

[Sho97] Peter W. Shor. “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer”. In SIAM Journal on Com-
puting Vol. 26,5 (1997), pages 1484–1509. http://dx.doi.org/10.113
7/S0097539795293172 (cit. on p. 2).

[Sil09] Joseph H. Silverman. “The arithmetic of elliptic curves”. Graduate Texts
in Mathematics 106. Springer-Verlag, 2009 (cit. on p. 110).

[Ste+15] W.A. Stein et al. “Sage Mathematics Software (version 6.8)”. The Sage
Development Team. 2015. http://www.sagemath.org (cit. on pp. 118,
121).

[Str10] Falko Strenzke. “A timing attack against the secret permutation in the
McEliece PKC”. In Post-quantum Cryptography, ed. by Nicolas Sendrier,
Vol. 6061, Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2010, pages 95–107 (cit. on p. 19).

[Str11] Falko Strenzke. “Timing attacks against the syndrome inversion in code-
based cryptosystems”. In IACR Cryptology ePrint Archive (2011). http
://eprint.iacr.org/2011/683.pdf (cit. on p. 19).

[Str12] Falko Strenzke. “Fast and secure root finding for code-based cryptosys-
tems”. In ryptology and network security – CANS 2012, ed. by Josef
Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, Vol. 7712, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pages 232–
246. https://eprint.iacr.org/2011/672.pdf (cit. on pp. 19, 25).

[Tea10] Circuit Minimization Team. “Multiplication circuit for GF(256) with
irreducible polynomial X8 +X4 +X3 +X + 1”. 2010. http://cs-www.
cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt (cit. on
p. 60).

https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
http://arxiv.org/abs/1504.01175
http://arxiv.org/abs/1504.01175
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
http://www.shoup.net/papers
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://www.sagemath.org
http://eprint.iacr.org/2011/683.pdf
http://eprint.iacr.org/2011/683.pdf
https://eprint.iacr.org/2011/672.pdf
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt

194 BIBLIOGRAPHY

[Thé03] Nicolas Thériault. “Index calculus attack for hyperelliptic curves of small
genus”. In Advances in Cryptology—ASIACRYPT 2003, ed. by Chi-Sung
Laih, Vol. 2894, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pages 75–92. http://www.iacr.org/archive/asiac
rypt2003/02_Session02/19_056/28940307.pdf (cit. on p. 94).

[Tho02] Emmanuel Thomé. “Subquadratic computation of vector generating
polynomials and improvement of the block Wiedemann algorithm”. In
Journal of Symbolic Computation Vol. 33,5 (2002), pages 757–775. htt
ps://hal-polytechnique.archives-ouvertes.fr/file/index/doci
d/103417/filename/jsc.pdf (cit. on pp. 158, 160).

[WC81] Mark N. Wegman and J. Lawrence Carter. “New hash functions and
their use in authentication and set equality”. In Journal of Computer
and System Sciences Vol. 22,3 (1981), pages 265–279. http://www.fi.
muni.cz/~xbouda1/teaching/2009/IV111/Wegman_Carter_1981_New
_hash_functions.pdf (cit. on p. 65).

[Wie83] Stephen Wiesner. “Conjugate coding”. In ACM SIGACT News Vol. 15,1
(Jan. 1983), pages 78–88 (cit. on p. 79).

[Wie86] Douglas H. Wiedemann. “Solving sparse linear equations over finite
fields”. In IEEE Transactions on Information Theory Vol. 32,1 (1986),
pages 54–62. http://www.enseignement.polytechnique.fr/profs/i
nformatique/Francois.Morain/Master1/Crypto/projects/Wiedema
nn86.pdf (cit. on p. 152).

[Wik15a] Wikipedia. “NewDES”. Accessed 27 September 2015. 2015. https://en
.wikipedia.org/wiki/NewDES (cit. on p. 132).

[Wik15b] Wikipedia. “Nothing up my sleeve number”. Accessed 27 September
2015. 2015. https://en.wikipedia.org/wiki/Nothing_up_my_slee
ve_number (cit. on pp. 107, 133).

[Wik16a] Wikipedia. “Barrel shifter”. Accessed 2 February 2016. 2016. https://
en.wikipedia.org/wiki/BarrelShifter (cit. on p. 50).

[Wik16b] Wikipedia. “RdRand”. Accessed 2 February 2016. 2016. https://en.w
ikipedia.org/wiki/Rdrand (cit. on p. 45).

[WP06] André Weimerskirch and Christof Paar. “Generalizations of the Karat-
suba algorithm for efficient implementations”. In IACR Cryptology
ePrint Archive (2006). https://eprint.iacr.org/2006/224.pdf (cit.
on p. 58).

[WZ88] Yao Wang and Xuelong Zhu. “A fast algorithm for Fourier transform
over finite fields and its VLSI implementation”. In IEEE Journal on
Selected Areas in Communications Vol. 6,3 (1988), pages 572–577 (cit.
on p. 11).

http://www.iacr.org/archive/asiacrypt2003/02_Session02/19_056/28940307.pdf
http://www.iacr.org/archive/asiacrypt2003/02_Session02/19_056/28940307.pdf
https://hal-polytechnique.archives-ouvertes.fr/file/index/docid/103417/filename/jsc.pdf
https://hal-polytechnique.archives-ouvertes.fr/file/index/docid/103417/filename/jsc.pdf
https://hal-polytechnique.archives-ouvertes.fr/file/index/docid/103417/filename/jsc.pdf
http://www.fi.muni.cz/~xbouda1/teaching/2009/IV111/Wegman_Carter_1981_New_hash_functions.pdf
http://www.fi.muni.cz/~xbouda1/teaching/2009/IV111/Wegman_Carter_1981_New_hash_functions.pdf
http://www.fi.muni.cz/~xbouda1/teaching/2009/IV111/Wegman_Carter_1981_New_hash_functions.pdf
http://www.enseignement.polytechnique.fr/profs/informatique/Francois.Morain/Master1/Crypto/projects/Wiedemann86.pdf
http://www.enseignement.polytechnique.fr/profs/informatique/Francois.Morain/Master1/Crypto/projects/Wiedemann86.pdf
http://www.enseignement.polytechnique.fr/profs/informatique/Francois.Morain/Master1/Crypto/projects/Wiedemann86.pdf
https://en.wikipedia.org/wiki/NewDES
https://en.wikipedia.org/wiki/NewDES
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
https://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
https://en.wikipedia.org/wiki/BarrelShifter
https://en.wikipedia.org/wiki/BarrelShifter
https://en.wikipedia.org/wiki/Rdrand
https://en.wikipedia.org/wiki/Rdrand
https://eprint.iacr.org/2006/224.pdf

BIBLIOGRAPHY 195

[YC05] Bo-Yin Yang and Jiun-Ming Chen. “All in the XL family: theory and
practice”. In Information Security and Cryptology – ICISC 2004, ed.
by Choonsik Park and Seongtaek Chee, Vol. 3506, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2005, pages 67–86. http
://by.iis.sinica.edu.tw/by-publ/recent/xxl.pdf (cit. on p. 152).

[YCB+07] Bo-Yin Yang, Chia-Hsin Chen, Daniel Julius Bernstein, and Jiun-Ming
Chen. “Analysis of QUAD”. In Fast Software Encryption, ed. by Alex
Biryukov, Vol. 4593, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2007, pages 290–308. https://www.iacr.org/archive/fs
e2007/45930292/45930292.pdf (cit. on p. 151).

[YCC04] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas T. Courtois. “On asymptotic
security estimates in XL and Gröbner bases-related algebraic cryptanal-
ysis”. In Information and Communications Security—ICICS 2004, ed. by
Javier Lopez, Sihan Qing, and Eiji Okamoto, Vol. 3269, Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2004, pages 401–413.
http://by.iis.sinica.edu.tw/by-publ/recent/xxl3.pdf (cit. on
p. 152).

http://by.iis.sinica.edu.tw/by-publ/recent/xxl.pdf
http://by.iis.sinica.edu.tw/by-publ/recent/xxl.pdf
https://www.iacr.org/archive/fse2007/45930292/45930292.pdf
https://www.iacr.org/archive/fse2007/45930292/45930292.pdf
http://by.iis.sinica.edu.tw/by-publ/recent/xxl3.pdf

Summary

Today’s internet traffic is guarded by cryptographic protocols such as Transport Layer
Security (TLS). These protocols use cryptographic primitives as building blocks to
carry out complex functions. How efficient the protocols are depends on how efficient
the implementations of the primitives are. How secure the protocols are depends on
how secure the implementations of the primitives are. This thesis presents fast and
timing-attack resistant implementations of various cryptographic primitives.

Code-based encryption schemes are among the most promising candidates for post-
quantum public-key encryption. The security of a code-based encryption scheme relies
on the code being used. In particular, there are two types of codes that withstand
known attacks, i.e., binary Goppa codes and QC-MDPC codes. This thesis shows
how the two types of codes can be implemented in constant time while still achieving
decent speeds.

Message authentication codes, which are often used to authenticate ciphertexts,
are one of the most widely used primitives nowadays. This thesis discusses how to
minimize bit operations for a specific type of message authentication code, using the
same binary FFT algorithm that is used for the binary Goppa code implementation.

Elliptic-curve cryptography is the most confidence inspiring and most efficient
public-key system in the pre-quantum world. The curve Curve25519, proposed by
Daniel J. Bernstein in 2005, has been deployed widely in various applications. This
thesis shows how vectorization helps to accelerate Curve25519 in primitives such as
Diffie-Hellman key exchange, digital signatures, and oblivious transfers. This thesis
also discusses the more fundamental issue of how curve standards might be manipu-
lated.

A small part of this thesis is devoted to solving multivariate polynomial systems.
This part is not concerned with constructing or implementing public-key primitives
but instead with solving quadratic systems, which is a fundamental problem that has
various cryptanalytic applications. One such application is evaluating the security of
multivariate-quadratic signatures, which are candidates for post-quantum signatures.

197

Curriculum Vitae

Tung Chou was born on April 3, 1984 in Taipei, Taiwan.
In 2008 he started his masters in the electrical engineering department of National

Taiwan University, Taiwan, under the supervision of Dr. Chen-Mou Cheng. This is
the time when he started to get to know cryptography and get interested in it. In
his masters he worked on multivariate cryptography, and in particular, he focused
on algorithms for system solving. In 2010, after graduating from National Taiwan
University, he started to work in Academia Sinica, Taiwan as a research assistant of
Prof. Dr. Bo-Yin Yang.

In 2012 he started his PhD in the Cryptographic Implementations group at
the Technische Universiteit Eindhoven, the Netherlands, under the supervision of
Prof. Dr. Daniel J. Bernstein and Prof. Dr. Tanja Lange. In his PhD he started to
work on more areas, including code-based cryptography, elliptic-curve cryptography,
and symmetric cryptography. His work in this period was supported by the Nether-
lands Organisation for Scientic Research (NWO) under grant 639.073.005 and by the
Commission of the European Communities through the Horizon 2020 program under
project number 645622 PQCRYPTO.

The present dissertation contains the results of his works from 2012 to 2016.

199

	Introduction
	I Preliminaries
	Cryptographic implementations
	Vectorization
	Timing attacks and constant-time implementations
	Bitslicing
	qhasm

	The Gao–Mateer additive FFT
	Additive FFT: overview
	Additive FFT: detail
	Radix conversion: an example
	The radix-conversion subroutine

	II Binary-field Cryptography
	McBits: fast constant-time code-based cryptography
	Field arithmetic
	Addition
	Multiplication
	Squaring
	Inversion

	Finding roots: the Gao–Mateer additive FFT
	Application to decoding
	Multipoint evaluation
	FFT improvement: 1-coefficient polynomials
	FFT improvement: 2-coefficient and 3-coefficient polynomials
	Results
	Other algorithms

	Syndrome computation: transposing the additive FFT
	Application to decoding
	Syndrome computation as the transpose of multipoint evaluation
	Transposing linear algorithms
	Transposing the additive FFT
	Improvement: transposed additive FFT on scaled bits

	Secret permutations without secret array indices: odd-even sorting
	Sorting networks
	Precomputed comparisons
	Permutation networks
	Alternative: random condition bits

	A complete code-based cryptosystem
	Parameters
	Key generation
	Encryption
	Decryption

	New speed records for CFS signatures
	Review of CFS
	Previous CFS speeds
	New CFS software
	New CFS speeds

	QcBits: constant-time small-key code-based cryptography
	Preliminaries
	QC-MDPC codes
	Decoding (QC-)MDPC codes
	The Niederreiter KEM/DEM encryption system for QC-MDPC codes

	Key-pair generation
	Private-key generation
	Polynomial view: public-key generation
	Generic multiplication in F2[x]/(xn-1)
	Generic squaring in F2[x]/(xn-1)

	KEM encryption
	Generating the error vector
	Polynomial view: public-syndrome computation
	Sparse-times-dense multiplications in F2[x]/(xn-1)

	KEM decryption
	Polynomial view: private-syndrome computation
	Polynomial view: counting unsatisfied parity checks
	Sparse-times-dense multiplications in Z[x]/(xn-1)
	Flipping bits

	Experimental results for decoding
	The future of QC-MDPC-based cryptosystems

	Auth256: faster binary-field multiplication and faster binary-field MACs
	Field arithmetic in F28
	Review of tower fields
	Variable multiplications
	Constant multiplications
	Subfields and decomposability

	Faster additive FFTs
	Size-4 FFTs: the lowest level of recursion
	The size-8 FFTs: the first recursive case
	The size-16 FFTs: saving additions for radix conversions
	Size-16 FFTs continued: decomposition at field-element level
	Improvements: a summary
	Polynomial multiplications: a comparison with Karatsuba and Toom

	The Auth256 message-authentication code: major features
	Output size: bigger-birthday-bound security
	Pseudo dot products and FFT addition
	Embedding invertible linear operations into FFT inputs

	Software implementation
	Minimizing memory operations in radix conversions
	Minimizing memory operations in muladdadd operations
	Implementing the size-16 additive FFT

	Auth256: minor details
	Review of Wegman–Carter MACs
	Field representation
	Hash256 padding and conversion
	Hash256 and Auth256 keys and authenticators

	Security proof

	III Elliptic-Curve Cryptography
	The simplest protocol for oblivious transfer
	The protocol
	Random OT
	How to use the protocol and UC Security
	Simulation based security (UC)

	The random OT protocol in practice
	Field arithmetic
	Implementation results

	Sandy2x: new Curve25519 speed records
	Arithmetic in F2255-19
	The radix-251 representation
	The radix-225.5 representation
	Why is smaller radix better?
	Importance of using a small constant
	Instruction scheduling for vectorized field arithmetic

	The Curve25519 elliptic-curve-Diffie-Hellman scheme
	Shared-secret computation
	Public-key generation

	Vectorizing the Ed25519 signature scheme
	Ed25519 verification

	How to manipulate curve standards:a white paper for the black hat
	Pesky public researchers and their security analyses
	Warning: math begins here
	ECC security vs. ECDLP security
	The probability of passing public criteria
	The probabilities for various feasible attacks

	Manipulating curves
	Curves without public justification
	The attack
	Implementation

	Manipulating seeds
	Hash verification routine
	Acceptability criteria
	The attack
	Optimizing the attack
	Implementation

	Manipulating nothing-up-my-sleeve numbers
	The Brainpool procedure
	The BADA55-VPR-224 procedure
	How BADA55-VPR-224 was generated
	Manipulating bit-extraction procedures
	Manipulating choices of hash functions
	Manipulating counter sizes
	Manipulating hash input sizes
	Manipulating the (a,b) hash pattern
	Manipulating natural constants
	Implementation

	Manipulating minimality
	NUMS curves
	Choice of security level
	Choice of prime
	Choice of ordering of field elements
	Choice of curve shape and cofactor requirement
	Choice of twist security
	Choice of global vs. local curves
	More choices
	Overall count
	Example

	Manipulating security criteria
	Afterword: removing the hat
	Scripts

	IV Multivariate System Solving with XL
	Parallel implementation of the XL algorithm
	The XL algorithm
	The Block Wiedemann algorithm

	The block Berlekamp–Massey algorithm
	Reducing the cost of the Berlekamp–Massey algorithm
	Parallelization of the Berlekamp–Massey algorithm

	Thomé's version of the block Berlekamp–Massey algorithm
	Matrix polynomial multiplications
	Parallelization of Thomé's Berlekamp–Massey algorithm

	Implementation of XL
	Efficient matrix multiplication
	Parallel Macaulay matrix multiplication

	Experimental results
	Impact of the block size
	Scalability experiments
	Comparison with PWXL and Magma F4
	Performance for computation on large systems

	Bibliography

