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Abstract. This paper presents an IND-CCA2 attack against the 1st-
and 2nd-round versions of NTS-KEM, i.e., the versions before the update
in December 2019. Our attack works against the 1st- and 2nd-round
specifications, with a number of decapsulation queries upper-bounded by
n−k and an advantage lower-bounded by roughly 0.5(n−k)t/n2, where
n, k, and t stand for the code length, code dimension, and the designed
decoding capacity, for all the three parameter sets of NTS-KEM. We
found that the non-reference implementations are also vulnerable to our
attack, even though there are bugs. There are also bugs in the reference
implementations, but in a way invulnerable to our attack.
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1 Introduction

NTS-KEM [1] is a key encapsulation mechanism submitted to the NIST Post-
Quantum Cryptography Standardization Process. NTS-KEM is one of the 25
submissions that entered the second round of the process. On 3 December, 2019,
during the second round of the process, Paterson, one of the principal submitters
of NTS-KEM, wrote the message in Appendix A (without the emphasis added)
in an email to NIST’s pqc-forum mailing list, to announce an update in their
specification.
We call this new version the updated 2nd-round version of NTS-KEM, of which
the specification can be found in [3], while the 2nd-round version of NTS-KEM
refers to the version submitted in March 2019 [2]. NTS-KEM did not advance to
the 3rd round as NTS-KEM and Classic McEliece [5] have merged. The merged
submission is called Classic McEliece and equals the 2nd-round version of Classic
McEliece.

Maram’s recent paper [13] discusses more about this “subtle issue” caused by
omission of re-encryption. In particular, [13, Section 3.1] argues that it might be
possible for an IND-CCA2 adversary against the 1st- and 2nd-round NTS-KEM
to modify the last n−k bits of the challenge ciphertext (where n and k stand for
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the code length and code dimension), such that the decapsulation oracle returns
the encapsulated session key. If this happens with a sufficiently high probability,
clearly IND-CCA2 security of the 1st- and 2nd-round version of NTS-KEM is
broken. However, Maram did not present any concrete IND-CCA2 attack in the
paper.

1.1 Our Contribution

In this paper, we present a simple IND-CCA2 attack against the 1st- and 2nd-
round versions of NTS-KEM [1, 2]. The attack takes only a few decapsulation
queries and bit flips, and it succeeds with a high probability. Our attack follows
Maram’s strategy: the adversary recovers the encapsulated session key by mod-
ifying the last n − k bits of the challenge ciphertext. Our attack does exploit
NTS-KEM’s Berlekamp-Massey algorithm, but in a way without forcing the al-
gorithm to “operate beyond its natural decoding capacity”: what we did is to
force the algorithm to operate below the designed decoding capacity t.

To be more precise, our attack works against the 1st- and 2nd-round spec-
ifications. The attack takes at most n − k decapsulation queries and at most
n− k bit flips, and has an advantage lower-bounded by roughly 0.5(n− k)t/n2,
for all the three parameter sets of NTS-KEM. We found that the non-reference
implementations are also vulnerable to our attack, even though there are bugs.
There are also bugs in the reference implementations, but in a way invulnerable
to our attack.

One might argue that since the NTS-KEM team has updated their specifica-
tion, it is not meaningful to study the security of the old specifications. However,
we think it is meaningful to study the security of the 1st- and 2nd-round versions
of NTS-KEM for the following reasons.

– In April 2018, Cheng from PQ Solutions Limited wrote the following message
in an email to the pqc-forum mailing list.

“We are particularly excited that one entity is already going to per-
form a substantial test on the performance and resilience of NTS-
KEM in the not too distant future.”

On the 22 May, 2019, Cho from ADVA gave a talk [7] in the 7th Code-Based
Cryptography Workshop. Cho presented experimental results of using code-
based KEMs, including NTS-KEM, for secure optical communication. This
shows that the source code of the 1st- and 2nd- round versions of NTS-KEM
has been used by some people, and clearly they need to be warned about
the attack.

– Maram wrote the following in [13, Section 3.1].
“At the same time, we stress that the above described attack is
just a possibility and is not a concrete attack. Because it is quite
possible that, by analyzing the decoding algorithm used in NTS-
KEM decapsulation, one might show such invalid ciphertexts are
computationally hard to generate adversarially.”
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The sentences and Paterson’s message suggest that the 1st- and 2nd-round
versions of NTS-KEM are not nessarily insecure. Indeed, a scheme can be
IND-CCA2 secure even if people do not know how to prove that. However,
we show that there is a concrete IND-CCA2 attack against the 1st- and
2nd-round versions of NTS-KEM.

To demonstrate that our attack works against the 1st- and 2nd-round specifi-
cations and non-reference implementations, we have modified the files nts kem.c,
ntskem test.c, and berlekamp massey.c in the submission packages. The con-
tents of the modified ntskem test.c and berlekamp massey.c are available at
Appendix E and F. More details about these modified files and how to use them
to demonstrate our attack are shown in Appedix D.

1.2 Related Works

We note that re-encryption is not a new countermeasure against attacks. For
example, re-encryption is required in the well-known Fujisaki-Okamoto trans-
form [10, 11], which converts weakly secure public-key encryption schemes into
CCA-secure ones. Dent [9] also makes use of re-encryption to construct CCA-
secure key encapsulation mechanisms from weakly secure public-key encryption
schemes. For comparison, a re-encryption step is included in the decapsulation
algorithm of the 1st- and 2nd-round versions of Classic McEliece [5].

1.3 Organization

Section 2 gives some basic knowledge about key encapsulation mechanisms and
code-based cryptography. Section 3 introduces the 1st- and 2nd-round NTS-
KEM. Section 4 presents our attack and how it works against the 1st- and
2nd-round specifications and non-reference implementations. For completeness,
Appendix C explains why our attack does not work against the reference imple-
mentations.

2 Preliminaries

This section presents some basic knowledge on key encapsulation mechanisms
and code-based cryptography.

2.1 Key Encapsulation Mechanisms (KEMs)

The concept of KEM was first introduced by Shoup [18]. A KEM KEM consists
of the following three algorithms.

– The key generation algorithm KEM.KeyGen is a probabilistic, polynomial-
time algorithm that outputs a key pair (PK, SK), where PK is the public key
and SK is the secret key.
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– The encapsulation algorithm KEM.Enc is a probabilistic polynomial-time al-
gorithm that on input a public key PK, outputs (K,ψ), where K ∈ {0, 1}` is
the session key and ψ is the ciphertext encapsulating K.

– The decapsulation algorithm KEM.Dec is a deterministic polynomial-time
algorithm that on input a secret key SK and a ciphertext ψ, outputs either
a session key K or the special symbol ⊥.

A KEM is required to be sound. For the purpose of this paper, one may
simply assume that this means that the decapsulation algorithm always outputs
the encapsulated session key as long as the input ciphertext is valid.

2.2 IND-CCA2 Security of KEMs

In order to define IND-CCA2 security of a KEM KEM, we consider a game con-
sisting of the following steps played by an adversary and a challenger.

1. The challenger generates a key pair (PK, SK) by running KEM.KeyGen and
sends PK to the adversary.

2. The adversary runs until it is ready to move to the next step. During this
step, the adversary may make a sequence of queries to a decapsulation oracle.
In each of the queries, the adversary submits a ciphertext ψ, and the oracle
responds with KEM.Dec(SK, ψ).

3. The challenger prepares a pair (K∗, ψ∗) by carrying out the following steps
and sends the pair to the adversary.

(K0, ψ
∗)← KEM.Enc(PK);

K1
$←− {0, 1}`;

τ
$←− {0, 1};

K∗ ← Kτ ;

4. The adversary runs until it is ready to move to the next step. During this
step, the adversary may make a sequence of queries to the decapsulation
oracle, under the condition that any ciphertext submitted by the adversary
must be different from ψ∗.

5. The adversary outputs τ ′ ∈ {0, 1}.

The advantage of an adversary is defined as |Pr[τ = τ ′] − 1/2|. Traditionally,
a KEM is said to be IND-CCA2 secure if for all probablistic, polynomial-time
adversary, the advantage grows negligible in the security parameter λ. However,
this definition requires that the KEM is defined as a family of systems. For KEMs
with specific parameter sets, such as NTS-KEM, we evaluate the efficiency of an
adversary by its actually running time and advantage.
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2.3 Linear Codes

A linear code of length n and dimension k over a field Fq is a dimension-k linear
subspace of Fnq . The elements in a code are called codewords. A linear code C
can thus be represented by the row space of a matrix, in which case we call
such a matrix a generator matrix. A linear code can also be represented by the
right kernel space of a matrix, in which case we call such a matrix a parity-check
matrix. Note that a generator matrix has at least k rows, and a parity-check
matrix has at least n− k rows.

Given a generator matrix G ∈ Fk×nq for a linear code, it is easy to compute
a parity-check matrix H of the code using simple linear algebra techniques. In
particular, if G has systematic form, which means G = (Ik|Q) where Q is a
k× (n− k) matrix, then H = (−QT |In−k) is a parity-check matrix for the same
code, and vice versa. The syndrome of v ∈ Fnq with respect to a parity-check

matrix H is defined as vHT .
The Hamming weight of a vector in Fnq is the number of non-zero coordinates

in it. We denote the Hamming weight of a vector v as |v|. The minimum distance
of a nonzero linear code is the smallest Hamming weight of any nonzero codeword
in C.

For a linear code C, a decoding algorithm takes r ∈ Fnq and a positive integer
w as inputs and outputs e ∈ Fnq such that |e| ≤ w and r− e ∈ C, if such e exists.
When the minimum distance is at least 2w+ 1, for any r, the vector e such that
|e| ≤ w and r − e ∈ C must be unique if it exists; In this case, we say that C
can correct w errors.

2.4 Binary Goppa Codes

Given a field F2m , a sequence α1, . . . , αn (called the support) of n distinct ele-
ments from F2m , and a degree-t polynomial g ∈ F2m [x] (called the Goppa polyno-
mial) such that g(α1) · · · g(αn) 6= 0, the Goppa code Γ2(α1, . . . , αn, g) is defined
as the set of vectors c = (c1, . . . , cn) ∈ Fn2 such that

n∑
i=1

ci
x− αi

≡ 0 mod g(x).

The dimension k of the code is at least n − mt. When g is square-free, the
minimum distance of Γ2(α1, . . . , αn, g) is known to be at least 2t+ 1, and

Γ2(α1, . . . , αn, g) = Γ2(α1, . . . , αn, g
2).

A specific parity-check matrix of Γ2(α1, . . . , αn, g), which we denote as
H(α1, . . . , αn, g), is given as follows.

1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

α
Deg(g)−1
1 /g(α1) α

Deg(g)−1
2 /g(α2) · · · αDeg(g)−1

n /g(αn)

 ,
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where each of the tn entries is actually a column vector in Fm2 , formed by the
coordinates with respect to a chosen F2-basis of F2m .

2.5 The McEliece Cryptosystem

The McEliece cryptosystem [15] is a public-key encryption system: it allows a
sender to encrypt his/her messages as a ciphertext using the receiver’s public
key, such that the messages can only be decrypted from the ciphertexts using
the receiver’s secret key.

To generate the public key and secret key, the receiver first generates a code
C over Fq of length n and dimension k with a decoder which is able to correct
t errors. The receiver then computes a generator matrix G of C and generates a
uniform random permutation matrix P ∈ Fn×nq and a uniform random invertible

matrix S ∈ Fk×kq . The receiver then publishes Ĝ = SGP as its public key and
keeps (G,P, S) as its secret key.

To perform encryption, the sender computes the ciphertext y = mĜ+e where
m ∈ Fkq is the message and e ∈ Fnq is a uniform random vector of weight t. To
perform decryption, the receiver computes yP−1 = mSG+ eP−1 and applies a
decoding algorithm to find mSG. From mSG the receiver then computes mS
and m using linear algebra.

3 The 1st- and 2nd-round versions of NTS-KEM

This section presents the specifications of the 1st- and 2nd-round versions of
NTS-KEM. The difference between the two versions is small: the 1st-round NTS-
KEM uses explicit rejection in the decapsulation algorithm, meaning that the
decapsulation algorithm returns ⊥ when the ciphertext is considered invalid.
The 2nd-round NTS-KEM uses implicit rejection in the decapsulation algorithm,
meaning that it returns an `-bit string when the ciphertext is considered invalid.

The reader might find that the key generation algorithm and the decoding
algorithm presented in this section look simpler than the ones shown in the 1st-
and 2nd-round specifications. We emphasize that this is because we decided to
omit irrelevant details in the specifications to simplify our discussions. It is easy
to see that the algorithms presented in this section are in fact equivalent to the
ones shown in the specifications.

3.1 Public Parameters and Parameter Sets

The public parameters of an instance of NTS-KEM are as follows.

– n = 2m, the length of the binary Goppa code.

– t, the number of errors that the code is designed to correct.

– f(x) ∈ F2[x], an irreducible polynomial of degree m, which is used to con-
struct F2m

∼= F2[x]/f(x).
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parameter set m n t

ntskem1264 12 4096 64
ntskem1380 13 8192 80
ntskem13136 13 8192 136

Table 1. The three parameter sets of NTS-KEM.

– ` = 256, which denotes the length of session keys.

NTS-KEM also makes use of a pseudorandom bit generator, denoted as H`(·),
which outputs `-bit strings. The three parameter sets of NTS-KEM are listed in
Table 1.

3.2 Key Generation

To generate a secret key, the user starts with generating a uniform random
square-free Goppa polynomial g(x) ∈ F2m [x] of degree t, and a uniform ran-
dom support α1, . . . , αn. Note that the support contains all elements of F2m .
The support and the Goppa polynomial then define the binary Goppa code
Γ2(α1, . . . , αn, g).

To compute the public key, the user first computes a “parity-check matrix”

H =


1/g2(α1) 1/g2(α2) · · · 1/g2(αn)
α1/g

2(α1) α2/g
2(α2) · · · αn/g

2(αn)
...

...
. . .

...
αt−11 /g2(α1) αt−12 /g2(α2) · · · αt−1n /g2(αn)


where each of the tn entries is again a column vector in Fm2 and then computes its
“reduced row echelon form”. Let k = n−mt. Once the reduced row echelon form
is obtained, the user “reorders its columns if necessary” to get a parity-check
matrix of the form (QT |In−k) and the corresponding generator matrix (Ik|Q).
Note that elements in the support need to be reordered in the same way as the
columns. The public key is then (Q, t, `).

It is not clear why H is used instead of H(α1, . . . , αn, g). In fact, we have not
found any existing literature showing that H is guaranteed to be a parity-check
matrix of the binary Goppa code. Any H that has full rank are guaranteed to be
a parity-check matrix, though. Indeed, as Γ2(α1, . . . , αn, g) = Γ2(α1, . . . , αn, g

2),
H(α1, . . . , αn, g

2) is a parity-check matrix of the code; Observe that H consists
of the first mt rows of H(α1, . . . , αn, g

2), and the dimension of the code is at
least n−mt; Therefore, if H has rank mt, it must have the same row space and
right kernel as H(α1, . . . , αn, g

2).
A secret key of the 1st-round version of NTS-KEM consists of three pieces of

data which can be easily derived from (α1, . . . , αn, g). A secret key of the 2nd-
round version of NTS-KEM consists of four pieces of data where the first three
are the same as those in the 1st-round NTS-KEM, and the last one is simply a
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uniform random bit string z ∈ F`2. To simplify our discussion, we consider that
the secret key is simply (α1, . . . , αn, g) or (α1, . . . , αn, g, z).

The key generation algorithm above is not well-defined for the following
reasons.

– It is possible that H is not full-rank, in which case it will be impossible to
bring H to the form (QT |In−k), it is not written in the specifications how
to deal with this case.

– It is not written in the specifications what “reduced row echelon form” means
and how the columns should be re-ordered exactly. Even if one assumes the
most common definition of reduced row echelon form, there are still multiple
deterministic and non-deterministic ways to reorder the columns.

The implementations of NTS-KEM, however, show that H is reduced to a matrix
that satisfies the following criteria.

– There is a sequence cn−k−r+1 < cn−k−r+2 < · · · < cn−k such that for each
i ∈ {n− k− r+ 1, . . . , n− k}, row i ends with a 1 in column ci, which is the
only non-zero entry in column ci.

– All rows before row n− k − r + 1 are zero rows.

Existence of zero rows means H is not full-rank. The implementations simply fail
to generate a key pair when H is not full-rank, which seems extremely unlikely to
happen for NTS-KEM’s parameter sets. After reducing H, the implementations
then swap column cn−k with column n − k, swap column cn−k−1 with column
n− k − 1, and so on to produce (QT |In−k).

As the key generation algorithm is not well-defined in the specifications, we
simply assume that the implemented key generation algorithm is what the NTS-
KEM team intended to specify, and we consider the implemented key generation
algorithm for our discussion.

3.3 Encapsulation

Given an NTS-KEM public key (Q, t, `), the encapsulation algorithm computes
a session key and a ciphertext encapsulating it by carrying out the following
steps.

– Generate a uniform random error vector e ∈ Fn2 with |e| = t.

– Partition e into (ea | eb | ec), where ea ∈ Fk−`2 , eb ∈ F`2, and ec ∈ Fn−k2 .

– Compute ke = H`(e) ∈ F`2. Let m = (ea | ke) ∈ Fk2 .

– Following McEliece encryption, compute c ∈ Fn2 as follows.

c = m · (I | Q) + e

= (m | m ·Q) + e

= (ea | ke | (ea | ke) ·Q) + (ea | eb | ec)
= (0a | ke + eb | (ea | ke) ·Q+ ec)

= (0a | cb | cc),
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where 0a is the zero vector of length k − `. Let the ciphertext be (cb | cc).

– Compute the session key kr = H`(ke | e) ∈ F`2.

– Return (kr, (cb | cc)).

3.4 Decapsulation

Given a ciphertext (cb | cc), the decapsulation works as follows.

– Taking the vector (0a | cb | cc) ∈ Fn2 and the secret key as inputs, compute
e ∈ Fn2 using the decoding algorithm (see Section 3.5).

– Partition e into (ea | eb | ec), where ea ∈ Fk−`2 , eb ∈ F`2, and ec ∈ Fn−k2 , and
compute ke = cb − eb.

– Check if H`(e) = ke and |e| = t. If both are true, return kr = H`(ke | e) ∈ F`2;
Otherwise return ⊥ for the 1st-round NTS-KEM or H`(z | 1a | cb | cc) for
the 2nd-round NTS-KEM.

3.5 The Decoding Algorithm

A strategy for decoding is to consider Γ2(α1, . . . , αn, g) as an alternant code
and use an alternant decoder to decode. A well-known alternant decoder is the
Berlekamp decoder. To find the error positions, the Berlekamp decoder makes
use of the Berlekamp-Massey algorithm ([4], [14]) to compute an error locator,
of which the roots are {α−1i | ei = 1, αi 6= 0}. In other words, by finding the
roots of the error locator, we can find the error positions {i | ei = 1, αi 6= 0}.
Some more operations are required to figure out whether ei = 0 or not.

NTS-KEM’s decoding algorithm uses the strategy above but introduces some
modifications. NTS-KEM’s decoding algorithm makes use of NTSKEM BM, which
is a modified Berlekamp-Massey algorithm. In NTSKEM BM, the error locator is
computed and converted into a polynomial σ∗, of which the roots are simply
{αi | ei = 1, αi 6= 0}. NTSKEM BM also computes a value ξ ∈ {0, 1}, to indi-
cate whether epos(0) = 1. Given an input vector r ∈ Fn2 , NTS-KEM’s decoding
algorithm works as follows.

– Compute the syndrome s = r · H(α1, . . . , αn, g
2)T ∈ F2t

2m .

– Compute (σ∗(x), ξ)← NTSKEM BM(s), where σ∗(x) ∈ F2m [x] and ξ ∈ {0, 1}.

– Set e = 0 ∈ Fn2 .

– Set ei = 1 for all i such that σ∗(αi) = 0.

– Set epos(0) = 1 if ξ = 1.

– Return e.
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3.6 NTS-KEM’s Berlekamp-Massey Algorithm

The Berlekamp-Massey algorithm in NTS-KEM’s specifications is shown in
Algorithm 1 (we put it in Appendix B due to the page limit). The algorithm is
the same as Algorithm 3 in the 1st- and 2nd-round supporting documentations,
except that we use t to indicate the designed decoding capacity. Without the lines
involving R, ξ, or σ∗, the algorithm is the same as Xu’s inversion-free Berlekamp-
Massey algorithm [20]. The following section presents an attack against NTS-
KEM. The attack makes use of the lines involving R, ξ, or σ∗, in particular line
16 to line 20, and the following theorem.

Theorem 1. If the input to Algorithm 1 is in

(c+ e) · H(α1, . . . , αn, g
2)T ,

where g(x) ∈ F2m [x] is square-free and of degree-t, c ∈ Γ2(α1, . . . , αn, g), e ∈
Fn2 , |e| ≤ t, then at the end of the algorithm we have

σ(x) = σ0
∏
ei=1

(1− αix),

where σ0 ∈ F2m \ {0}.

Proof. As discussed in Section 3.2, H(α1, . . . , αn, g
2)T is a parity-check matrix

of Γ2(α1, . . . , αn, g). Following the discussion in [12], the original Berlekamp-
Massey algorithm ([4], [14]) then computes A(x) =

∏
ei=1(1 − αix) on input

(c + e) · H(α1, . . . , αn, g
2)T . It is shown in [20] that the inversion-free version

computes a similar polynomial σ(x) = σ0 ·A(x) with σ0 6= 0.

4 Our Attack

This section presents our IND-CCA2 attack and explains why it can be used to
attack the specifications and non-reference implementations. The reason why it
does not work for the reference implementations is shown in Appendix C.

4.1 The Adversary

We consider an adversary who does nothing before receiving (K∗, ψ∗) from the
challenger. After receiving (K∗, ψ∗) from the challenger, the adversary partitions
ψ∗ into (cb, cc) as in regular decapsulation and performs the following two simple
steps for each of the n− k bits of cc:

– Flip the bit of cc to obtain (cb, c
′
c).

– Send (cb, c
′
c) to the decapsulation oracle.

– If the decapsulation oracle returns K∗, return τ ′ = 0.
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If the decapsulation oracle does not return K∗ in any of the n−k iterations, the
adversary returns τ ′ = 1.

Clearly, the adversary takes at most n − k queries, and it takes only one
bit flip for each query. The following discussion shows that Pr[τ ′ = τ ] is lower-
bounded by roughly 0.5(n − k)t/n2 + 0.5, so the advantage of the adversary is
lower-bounded by roughly 0.5(n− k)t/n2.

4.2 Attacking the Specifications

To understand the success probability of our attack against the 1st- and 2nd-
round specifications, assume that in one of the n − k iterations, the adversary
sends (cb, c

′
c) to the decapsulation oracle, such that

(0a, cb, c
′
c) ∈ e′ + Γ2(α1, . . . , αn, g),

where |e′| = t − 1 and e′pos(0) = 0. Let e ∈ Fn2 be the unique vector such that

|e + e′| = 1 and epos(0) = 1. According to Theorem 1, on input (0a, cb, c
′
c),

Algorithm 1 computes

σ(x) = σ0
∏
e′i=1

(1− αix),

which is of degree t− 1. There are two cases for the return value of Algorithm 1,
one for ξ = 0 and one for ξ = 1. If ξ = 0, Algorithm 1 returns

(xtσ(x−1), 0) = (σ0x
∏
e′i=1

(x− αi), 0),

and therefore the decoding algorithm will return e instead of e′. If ξ = 1, Algo-
rithm 1 returns

(xt−1σ(x−1), 1) = (σ0
∏
e′i=1

(x− αi), 1),

and therefore the decoding algorithm will again return e instead of e′. In other
words, no matter what the value of ξ is, the decoding algorithm will return e.

Now consider the case when pos(0) > k and epos(0) = 1, where e is the error
vector used to generate ψ∗. In this case, in one of the n−k iterations carried out
by the adversary, the adversary will send to the decapsulation oracle (cb, c

′
c) of the

form discussed in the previous paragraph. Therefore, in the iteration, the error
vector e will be returned by the decoding algorithm. As H`(e) = ke = cb − eb
and |e| = t, the session key encapsulated by (cb, cc) will be returned by the
decapsulation oracle.

To compute Pr[τ = τ ′], it suffices to compute Pr[τ = 0 and τ = τ ′] and
Pr[τ = 1 and τ = τ ′]. Assuming τ = 0, there is a probability at least

Pr[epos(0) = 1] · Pr[pos(0) > k]

11



n k #queries advantage

ntskem1264 4096 3328 ≤ 768 ≥ 0.00146
ntskem1380 8192 7152 ≤ 1040 ≥ 0.00061
ntskem13136 8192 6424 ≤ 1768 ≥ 0.00179

Table 2. The number of decapsulation queries and advantage of our IND-CCA2 attack.

that our attack will recover the session key and thus return τ ′ = 0. In other
words, we have

Pr[τ = 0 and τ = τ ′] ≥ 0.5 · Pr[epos(0) = 1] · Pr[pos(0) > k]

= 0.5 · t/n · Pr[pos(0) > k].

Assuming τ = 1, the probability that one of n− k decapsulation queries returns
K∗ is upper bounded by (n− k)/2` as K∗ is a random string. Therefore,

Pr[τ = 1 and τ = τ ′] ≥ 0.5 · (2` − (n− k))/2`.

What is the actual value of Pr[pos(0) > k]? Intuitively, Pr[pos(0) > k] should
be (n−k)/n, and this seems to be true according to our experiments. Therefore,
under the assumption that Pr[pos(0) > k] = (n− k)/n, we may conclude that

Pr[τ = τ ′] ≥ 0.5 · (n− k)t/n2 + 0.5 · (2` − (n− k))/2`.

For real parameters, the term 0.5 · (2` − (n − k))/2` is usually extremely close
to 0.5, so one may also simply consider that the advantage is lower bounded by
roughly 0.5(n−k)t/n2. Based on the discussion above, it is easy to compute the
number of queries and advantage of our attack against the 3 parameter sets of
NTS-KEM; The numbers are shown in Table 2.

We note that if the challenger generates a key pair with pos(0) ≤ k, the
advantage of our attack will be close to 0. If the challenger generates a key pair
with pos(0) > k, the advantage of our attack will be lower-bounded by roughly
0.5 · t/n.

4.3 Attacking the Non-reference Implementations

In addition to the reference implementations, some other implementations are
also included in the 1st- and 2nd-round submission packages. These are the im-
plementations under the directories Additional Implementation and
Optimized Implementation. We found the following bugs in the code for Algo-
rithm 1 in these implementations.

– In the last of the 2t iterations, R is not updated.

– In the first 2t− 1 of the 2t iterations, R is updated as follows.
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if d == 0 OR i < 2L then
if d == 0 then

R← R+ 1
end if

else
R← 0

end if

These bugs can make R smaller and thus can change the value of ξ. However, as
discussed in Section 4.2, our attack is independent of the actual value of ξ, so
the numbers in Table 2 still apply.
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to fix a subtle issue in the ROM security proof for NTS-KEM. This
issue was identified by Varun Maram from ETH Zurich. This change
necessitates the inclusion of the public key as part of the private key and
increases the running time of decapsulation. Fortuitously, this change
facilitates a QROM proof for NTS-KEM which we plan to make public
soon.
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[In more detail: our proof did not fully address the possibility that certain
adversarially generated ciphertexts not output by encapsulation might
decapsulate correctly. This is due to possible behaviour of the decoder,
including the Berlekamp-Massey algorithm, when operating beyond its
natural decoding capacity. Adding the re-encapsulation step ensures that
only correctly generated ciphertexts lead to valid decapsulations; other
ciphertexts are implicitly rejected. Our new security proof still tightly
relates breaking IND-CCA security of (the new version of) NTS-KEM to
breaking one-wayness of the McEliece scheme with the same parameters.
We also stress that we are not aware of any concrete attack arising from
the issue identified in our proof. Since re-encapsulation makes use of the
public key, we now include the public key as part of the private key;
an alternative whose cost can be amortised over many invocations of
decapsulation is to regenerate the public key from the private key when
needed.]”

B NTS-KEM’s Berlekamp-Massey Algorithm

Algorithm 1 NTS-KEM’s Berlekamp-Massey Algorithm

1: function BerlekampMassey(~s)
Require: ~s = (s0, s1, . . . , s2t−1)
Require: σ(x) =

∑
σix

i = 1
Require: β(x) =

∑
βix

i = x
Require: δ = 1
Require: L = R = ξ = 0
2: for i = 0 to 2t− 1 step 1 do
3: d←

∑min{i,t}
j=0 σjsi−j

4: ψ(x)← δσ(x)− dβ(x)
5: if d == 0 OR i < 2L then
6: R← R+ 1
7: β(x)← xβ(x)
8: else
9: R← 0

10: β(x)← xσ(x)
11: L← i− L+ 1
12: δ ← d
13: end if
14: σ(x)← ψ(x)
15: end for
16: if Degree of σ(x) < t− R

2
then

17: ξ ← 1
18: end if
19: σ∗(x)← xt−ξσ(x−1)
20: return (σ∗(x), ξ)
21: end function
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C Attacking the Reference Implementations

We found the following bugs in the code for Algorithm 1 in the reference imple-
mentations.

– In each of the 2t iterations, R is updated in the same way as the pseudocode
in Section 4.3.

– σ∗(x) is computed as xDeg(σ(x))σ(x−1).

We also found that after obtaining (σ∗(x), ξ), the reference implementations
compute the error vector e as follows.

– Set e = 0 ∈ Fn2 .
– Set ei = 1 for all i such that σ∗(αi) = 0 and αi 6= 0.
– Set epos(0) = 1 if ξ = 1.

Note that this is different from what is described in Section 3.5.
Our attack relies on forcing the decoding algorithm to take an input vector

which is the sum of a codeword and an error vector e′ with |e′| = t − 1 and
e′pos(0) = 0. In this case, according to Theorem 1, Algorithm 1 computes

σ(x) = σ0
∏
e′i=1

(1− αix),

so the reference implementations compute

σ∗(x) = σ0
∏
e′i=1

(x− αi).

How about the value of ξ? It turns out that Algorithm 1 computes σ(x) in the
first 2t−2 iteration; See [14] for discussions on the number of iterations required
to compute the linear feedback shift register. This forces d to be 0 in the last
2 iterations, so we have R ≥ 2. As Deg(σ) = t − 1 ≥ t − R/2, the reference
implementations computes ξ = 0. Therefore, the decoding algorithm returns the
weight-(t−1) vector e′, and the decapsulation oracle returns ⊥ or H`(z, 1a, cb, c

′
c)

instead of the session key.

D Implementations

To demonstrate that our attack works against the non-reference implementa-
tions, We modified ntskem test.c in the non-reference implementations in-
cluded in the 1st-round and 2nd-round submission packages. The content of
the modified file is available in Appendix F. The modified testkem nts function
keeps generating ciphertext-session-key pairs. For each ciphertext, it is checked
whether flipping any of the last n− k bits will result in a ciphertext that decap-
sulates to the same session key. If this happens, a message

Original session key returned!
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will be printed. One can replace the original ntskem test.c by the modified one
and compile each non-reference implementation using make. Then by running
the executables ntskem-*-test, the user can see that the message usually shows
after trying a several hundreds of ciphertext-session-key pairs.

To demonstrate that our attack works against the specifications, we fixed the
bugs in berlekamp massey.c and nts kem.c in the reference implementations
included in the 1st-round and 2nd-round submission packages. The content of
the modified berlekamp massey.c is available in Appendix E. The modified
berlekamp massey function updates R and computes σ∗ in the correct way. For
nts kem.c, we only change the code segment

memset(e_prime, 0, sizeof(e_prime));

for (i=1; i<NTS_KEM_PARAM_N; i++) {

e_prime[i>>3] |= (CT_is_equal_zero(evals[i]) << (i & 7));

}

e_prime[0] |= ((uint8_t)extended_error);

in the nts kem decapsulate function into the following.

memset(e_prime, 0, sizeof(e_prime));

for (i=0; i<NTS_KEM_PARAM_N; i++) {

e_prime[i>>3] |= (CT_is_equal_zero(evals[i]) << (i & 7));

}

e_prime[0] |= ((uint8_t)extended_error);

The modification changes the way the error vector e is computed from σ∗ and ξ to
the way specified in Section 3.5 (which is equivalent to what is specified in NTS-
KEM’s specifications). The user can replace ntskem test.c by the modified one
replace berlekamp massey.c by the modified one, apply the same change to
nts kem.c, do make and execute ntskem-*-test. Then the user will again see
that the message usually shows after trying a several hundreds of ciphertext-
session-key pairs.

E The modified berlekamp massey.c

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "berlekamp_massey.h"
#include "bits.h"

poly *berlekamp_massey(const FF2m *ff2m,
const ff_unit *S,
int slen,
int *extended_error)

{
poly *ex = NULL;
ff_unit *sigma = NULL, *beta = NULL, *varphi = NULL;
ff_unit *src0_ptr = NULL, *src1_ptr = NULL, *dst_ptr = NULL;
ff_unit d, delta = 1;
ff_unit inv = 0;
uint32_t control, d_eq_0;
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int32_t i, j, v, t, L = 0, R = 0;

t = slen >> 1;
sigma = (ff_unit *)calloc(t+1, sizeof(ff_unit));
beta = (ff_unit *)calloc(t+1, sizeof(ff_unit));
varphi = (ff_unit *)calloc(t+1, sizeof(ff_unit));
if (!sigma || !beta || !varphi) {

goto BMA_fail;
}
sigma[0] = 1; /* sigma(x) = 1 */
beta[1] = 1; /* beta(x) = x */
*extended_error = 0;

/* Loop until we process all 2t syndromes */
for (i=0; i<slen; i++) {

/**
* d = \sum_{i}^{\min{i, t}} sigma_j * S_{i-j}
**/

v = CT_min(i, t);
for (d=0,j=0; j<=v; j++) {

d = ff2m->ff_add(ff2m, d,
ff2m->ff_mul(ff2m, sigma[j], S[i-j]));

}
/**
* varphi(x) = delta.sigma(x) - d.beta(x)
**/

for (j=0; j<=t; j++) {
varphi[j] = ff2m->ff_add(ff2m,

ff2m->ff_mul(ff2m, delta, sigma[j]),
ff2m->ff_mul(ff2m, d, beta[j]));

}

d_eq_0 = CT_is_equal_zero((uint32_t)d); /* d == 0? */
control = d_eq_0 || CT_is_less_than(i, (L << 1)); /* (d == 0) OR (i < 2L) */

/**
* if control is 1 -> beta(x) = x.beta(x)
* otherwise -> beta(x) = x.sigma(x)
**/

v = t;
src0_ptr = (ff_unit *)&sigma[t-1];
src1_ptr = (ff_unit *)&beta[t-1];
dst_ptr = (ff_unit *)&beta[t];
while (v-- > 0) {

*dst_ptr = CT_mux(control, *src1_ptr, *src0_ptr);
--dst_ptr;
--src1_ptr;
--src0_ptr;

}
beta[0] = 0x00;

/**
* if control is 1 ->
* R = R + 1 if d == 0
* otherwise ->
* R = 0
* L = i - L + 1
* delta = d
**/

L = (int32_t)CT_mux(control, L, i-L+1);
R = (int32_t)CT_mux(control, R + 1, 0);
delta = (ff_unit)CT_mux(control, delta, d);

memcpy(sigma, varphi, (t+1)*sizeof(ff_unit));
}

ex = init_poly(t+1);
if (!ex) {
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goto BMA_fail;
}
ex->degree = t;
while (ex->degree > 0 && !sigma[ex->degree]) --ex->degree;
inv = ff2m->ff_inv(ff2m, sigma[0]);

*extended_error = CT_is_less_than(ex->degree, t - (R>>1));

for (i=0; i <= t-*extended_error ; i++) {
if (t-*extended_error-i <= ex->degree)

ex->coeff[i] = ff2m->ff_mul(ff2m, sigma[t-*extended_error-i], inv);
}

ex->degree = t - *extended_error;

BMA_fail:
if (varphi) {

memset(varphi, 0, (t+1)*sizeof(ff_unit));
free(varphi);

}
if (beta) {

memset(beta, 0, (t+1)*sizeof(ff_unit));
free(beta);

}
if (sigma) {

memset(sigma, 0, (t+1)*sizeof(ff_unit));
free(sigma);

}

return ex;
}

F The modified ntskem test.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "api.h"
#include "ntskem_test.h"
#include "nts_kem_params.h"
#include "random.h"

int testkem_nts(int iterations)
{

int i, it = 0;
uint8_t *pk, *sk;
uint8_t *encap_key, *decap_key, *ciphertext, *flipped;
FILE *fp = NULL;
unsigned char entropy_input[] = {

0xaa, 0xe7, 0xd7, 0x4e, 0x3c, 0x3a, 0x52, 0xdd,
0x87, 0xc7, 0x2a, 0xa4, 0x38, 0x54, 0x7e, 0x37,
0x1e, 0x97, 0x29, 0x78, 0x22, 0xa2, 0xcd, 0x83,
0x43, 0x64, 0x84, 0xcf, 0x77, 0x6b, 0x9e, 0xa5,
0x53, 0xf3, 0x50, 0xc5, 0xc7, 0x8d, 0x46, 0xb3,
0xa5, 0xf2, 0xe3, 0x99, 0x63, 0x10, 0x1d, 0x10

};
unsigned char nonce[48];

fprintf(stdout, "NTS-KEM(%d, %d) Test\n", NTSKEM_M, NTSKEM_T);

do {
if ((fp = fopen("/dev/urandom", "r"))) {

if ((sizeof(entropy_input) !=
fread(entropy_input, 1, sizeof(entropy_input), fp)) ||
(sizeof(nonce) != fread(nonce, 1, sizeof(nonce), fp))) {
break;
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}
}
fclose(fp);

memcpy(&entropy_input[48-sizeof(it)], &it, sizeof(it));

fprintf(stdout, "Iteration: %d, Seed: ", it);
for (i=0; i<sizeof(entropy_input); i++)

fprintf(stdout, "%02x", entropy_input[i]);
fprintf(stdout, "\n"); fflush(stdout);

randombytes_init(entropy_input, nonce, 256);

pk = (uint8_t *)calloc(CRYPTO_PUBLICKEYBYTES, sizeof(uint8_t));
sk = (uint8_t *)calloc(CRYPTO_SECRETKEYBYTES, sizeof(uint8_t));
crypto_kem_keypair(pk, sk);

ciphertext = (uint8_t *)calloc(CRYPTO_CIPHERTEXTBYTES, sizeof(uint8_t));
flipped = (uint8_t *)calloc(CRYPTO_CIPHERTEXTBYTES, sizeof(uint8_t));
encap_key = (uint8_t *)calloc(CRYPTO_BYTES, sizeof(uint8_t));
decap_key = (uint8_t *)calloc(CRYPTO_BYTES, sizeof(uint8_t));

crypto_kem_enc(ciphertext, encap_key, pk);

for (i = 0; i < NTS_KEM_PARAM_M*NTS_KEM_PARAM_T; i++)
{

memcpy(flipped, ciphertext, CRYPTO_CIPHERTEXTBYTES);

flipped[CRYPTO_CIPHERTEXTBYTES-1 - i/8] ^= 1 << (i%8);

crypto_kem_dec(decap_key, flipped, sk);

if (0 == memcmp(encap_key, decap_key, CRYPTO_BYTES))
{

fprintf(stderr, "Original session key returned!\n");
getchar();

}
}

free(decap_key);
free(encap_key);
free(ciphertext);
free(flipped);
free(sk);
free(pk);

}
while (++it < iterations || 1);

return 0;
}

20


	An IND-CCA2 Attack Against the 1st- and 2nd-round Versions of NTS-KEM

