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Abstract. In this preliminary version of the work, we sketch our ideas
regarding canonical forms for matrices, and how they can be used to
obtain compact signatures from the linear equivalence problem.

1 Introduction

LESS is a post-quantum signature scheme which was first introduced
in [6]. The core of LESS is a Sigma protocol based on the permutation
equivalence problem (PEP) or the linear equivalence problem (LEP);
the Sigma protocol is then turned into a signature scheme using the
Fiat-Shamir transform. Several improvements followed in subsequent
works: for instance, the authors in [3] show that the signature size can
be reduced by having more than 2 generator matrices in the public
key, as well as by selecting challenges according to a fixed-weight
distribution. In [10], it is shown that it is possible to further reduce
the signature size, by a large factor, as some pieces of information
in the commitments are redundant. The idea of [10] is later used
for the specification of LESS [1], a project submitted to NIST’s call
for additional post-quantum signatures [9]. The specification shows
that the smallest signature sizes are around 5.0 KB, 13.4 KB, and
26.6 KB for security categories 1, 3 and 5, respectively. These sizes
are achieved by using more than 2 generator matrices in each public
key, which increases the public key sizes by a large factor.

In this paper, we show that the idea of [10] can be described using
the concept of equivalent relations and canonical form of matrices.
Using such a concept, we are able to generalize this approach and
exploit various types of canonical forms; thus, we are able propose a
new family of LESS-like signature schemes which we collectively call



LEQ, of which LESS serves as a special case. With LEQ, it is possible
to achieve even smaller signatures: for instance, the signature sizes
are only around 2.4 KB, 5.7 KB, and 9.8 KB for category 1, 3 and 5,
respectively, for one version of LEQ, with only 2 generator matrices
in each public key.

2 Notation and Preliminaries

We will denote by q a prime power, e.g., an integer of the form
q = pm with p prime and m ∈ N. As usual, Fq will denote the finite
field with q elements. We will use poly(n, q) to indicate the set of
all positive-valued functions of n and q which can be bounded by a
polynomial in n and q.

We utilize three matrix groups in our work, which are all in fact
subgroups of the general linear group, GLn(Fq). The first, is the sym-
metric group, i.e. the group of permutations on n objects, represented
as binary matrices with exactly a single 1 in each row and column;
this is denoted by Pn. Second, we consider the group comprised of di-
agonal matrices over Fq, such that all elements on the main diagonal
are non-zero; we denote this by Dn(Fq). Finally, we define a group
which is a generalization of Pn, where each permutation is scaled
with non-zero factors from Fq; we denote this by Mn(Fq). In other
words, for each Q ∈ Mn(Fq), we have that Q = P ·D, where P ∈ Pn

and D ∈ Dn(Fq); it is easy to see, then, that this group is isomorphic
to Pn×Dn(Fq). Such matrices are known as monomial matrices, and
we will thus refer to the group Mn(Fq) as the monomial group over
(Fq). For the remainder of the paper, we will often omit Fq, when
clear from the context, and simply write Pn,Dn,Mn.

The matrices considered in this work are mostly treated in the
context of coding theory. Indeed, each matrix, defined over a finite
field, potentially defines a linear code, as follows. Let q, n, k ∈ Z
such that q is a prime power and n > k > 0. The value n is called
length of the code, while k is its dimension. This terminology stems
from linear algebra, as indeed a linear code is nothing but a vector
space, and more precisely, a subspace of Fn

q having dimension k as a
vector space, i.e. admits a basis with k linearly independent vectors.
When these basis vectors are collected as row vectors, they form a
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k × n matrix G known as generator matrix, since it generates the
code in the vector-space fashion, i.e. via linear combinations of the
basis elements. In other words, a linear code C is defined as the
set

{
uG | u ∈ Fk

q

}
. Note that there are several choices for generator

matrices for the same code, corresponding to different choices of
basis, which can be obtained by applying a non-singular change-of-
basis matrix S ∈ GLk(Fq); in particular, when S is the inverse of
the leftmost k × k submatrix, one obtains a generator in the form
(Ik | M), where Ik is the identity matrix of size k, which is known
as systematic form.

Linear codes are typically measured in the Hamming metric,
which defines the weight of a (code)word as the number of its non-
zero positions. Indeed, the precise distribution of weights of the var-
ious codewords, and the distance between them, is exactly what
characterizes the code, enabling features such as error detection and
correction. With this in mind, it is then natural to consider equiv-
alent two codes having an identical weight distribution. Equivalent
codes are obtained from one another via an isometry, i.e. a map pre-
serving weights. In the simplest of cases, such a map consists of just a
permutation, which leads to the notion of permutation equivalence;
if instead the map is a monomial one, this is usually known as linear
equivalence4. It is immediate to note that permutation equivalence
is nothing but a special case of linear equivalence. Equivalent codes
can be easily represented via their generator matrices, so that, if C0
is permutationally (resp. linearly) equivalent to C1, then there exist
a change-of-basis matrix S ∈ GLk(Fq) and a permutation P ∈ Pn

(resp. monomial Q ∈ Mn) such that G1 = S · G0 · P , where G0 and
G1 are the respective generator matrices.

Determining whether two codes are equivalent is not an easy task.
In cryptography, one is often more interested in the computational
version of the problem, which we report below.

Problem 1 (Code Equivalence) Given C0, C1 ⊆ Fn
q with dimen-

sion k, having generator matrices G0, G1 respectively, decide if C0 is

4 The more general notion of semilinear equivalence refers to the addition of a field
automorphism. This concept is not relevant for cryptographic applications, and we
do not treat it here.
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equivalent to C1, i.e., if there exists S ∈ GLk(Fq) and P ∈ Pn (resp.
Q ∈ Mn) such that G1 = SG0P (resp. G1 = SG0Q).

The problem is known respectively as Permutation Equivalence
Problem (PEP) or Linear Equivalence Problem (LEP), depending
on which kind of equivalence is involved.

The hardness of PEP and LEP has been studied in detail through
several works, and we point the interested reader to [4, 5, 12] for an
extensive treatment.

3 The LESS Signature Scheme

We will now briefly illustrate the Sigma protocol, based on the
LEP problem, underlying the LESS signature scheme. To begin, the
prover publishes as public key a pair of equivalent codes (C0, C1)
defined by respective generator matrices (G0, G1), storing the equiv-
alence map as its private key. It then proceeds using the following
steps:

1. The prover first generates a random matrix Q̃ in Mn (or Pn in the
permutation version) such that SF(G0Q̃) ̸=⊥. Then, the commit-
ment cmt is computed as Hash(SF(G0Q̃)).

2. The verifier generates the challenge ch ∈ {0, 1}.
3. The prover generates the response rsp as (1− ch) · Q̃+ ch ·Q−1Q̃.

4. The verifier accepts the response if Hash(SF(Gch · rsp)) = cmt.

4 Equivalence Relations on Matrices

Let q, n, k ∈ Z be the typical coding theory parameters (see Sec-
tion 2). This section introduces and discusses some equivalence re-

lations on Fk×(n−k)
q and Fk×n

q . The equivalence relations introduced
in this sections are defined using 4 sets of matrices:

– The set πr ∈ {{Ik},Pk(Fq)}.

– The set πc ∈ {{In−k},Pn−k(Fq)}.

– The set δr ∈ {{Ik},Dk(Fq)}.

– The set δc ∈ {{In−k},Dn−k(Fq)}.
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4.1 Equivalence Relations on Fk×(n−k)
q

Definition 1. Given F = πr × πc × δr × δc, we define ϵF as the
equivalence relation such that any two matrices A,B ∈ Fk×(n−k)

q are
equivalent under ϵF (denoted as A ∼ϵF B) if and only if

B = Pr ·Dr · A ·Dc · Pc,

for some (Pr, Pc, Dr, Dc) ∈ F .

Notice that the type of equivalence between two matrices depends
on how the sets πr, πc, δr, δc are defined. For instance, if δr = {Ik}
and δc = {In−k}, then A ∼ϵF B implies that A = Pr · B · Pc, since
Dr, Dc ∈ δr × δc = {Ik} × {In−k}, which means Dr = Ik and Dc =
In−k.

4.2 Equivalence Relations on Systematic Matrices in
Fk×n
q

Definition 2. Given F = πr × πc × δr × δc, we define EF as the
equivalence relation such that any two systematic matrices A,B ∈
Fk×n
q are equivalent under EF (denoted as A ∼EF B) if and only if

B = T · A ·
[
D−1

r P−1
r 0

0 DcPc

]
,

for some (Pr, Pc, Dr, Dc) ∈ F and T ∈ GLk(Fq).

4.3 Relationship between ϵ and E

Theorem 1. Let Â = (Ik | A) ∈ Fk×n
q and B̂ = (Ik | B) ∈ Fk×n

q ,

Â ∼EF B̂ ⇐⇒ A ∼ϵF B.

Moreover,

B̂ = T · Â ·
[
D−1

r P−1
r 0

0 DcPc

]
⇐⇒ B = Pr ·Dr · A ·Dc · Pc.
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Proof.

(Ik | B)︸ ︷︷ ︸
=B̂

= T · (Ik | A)︸ ︷︷ ︸
=Â

·
[
D−1

r P−1
r 0

0 DcPc

]

= T︸︷︷︸
=Pr·Dr

·((PrDr)
−1 | A) ·

[
Ik 0
0 DcPc

]
= (PrDr) · ((PrDr)

−1 | A) ·
[
Ik 0
0 DcPc

]
=

[
Ik | (PrDr) · A · (DcPc)

]
4.4 Representatives in Equivalence Classes

Once F is defined, ϵF , EF , and the corresponding equivalence classes
are also defined. For the purpose of this paper, we are interested in
specifying representatives for some (not necessarily all) equivalence
classes. We call the representative of an equivalence class the canon-
ical form of any matrix in the equivalence class. For the purpose of
this paper, it would be sufficient if

1. for “most” of the matrices, the canonical form is well-defined,
and

2. there is an “efficient” algorithm that, given any matrix in Fk×(n−k)
q ,

outputs the canonical form if it is well-defined or ⊥ otherwise.

In the following, we formalize such properties.

Definition 3. Canonical form
Let F = πr × πc × δr × δc. Let CF : Fk×(n−k)

q 7→
{
{⊥} ∪ Fk×(n−k)

q

}
;

we say that CF is a canonical form for F if it satisfies the following
properties:

i) for any A ∈ Fk×(n−k)
q , computing CF(A) takes time which is in

poly(n, q);

ii) let γ(n, q) denote the success probability, i.e., the probability that
CF(A) does not return a failure when A is uniformly random over
Fq; then, it must be 1

γ(n,q)
∈ poly(n, q);
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iii) if B = CF(A), then it must be A ∼εF B, i.e.,

∃(Pr, Pc, Dr, Dc) ∈ F such that B = Dr · Pr · A · Pc ·Dc.

Also, computing Pr, Pc, Dr, Dc should take time in poly(n, q);
iv) for any two matrices A ∼εF A′, it must be CF(A) = CF(A′).

As we shall see in the following, the above properties are crucial to
both dispose of a useful (i.e., efficiently computable) canonical form
and, at the same time, allow for a tight correspondence between the
classical code equivalence problem and the problems we rely on in
this paper.

Due to Theorem 1, for any Â = (Ik | A) ∈ Fk×n
q , we define CF(Â)

as (Ik | CF(A)) if CF(A) ̸=⊥, or ⊥ otherwise.

5 Using EF to Reduce LESS Signature Size:
LEQ

Given F = πr × πc × δr × δc, the underlying Sigma protocol in the
LEQ signature scheme is essentially the same as the one shown in
Section 3, except that and SF(G0 · Q̃) is replaced by CF(SF(G0 · Q̃))
for commitment, and SF(Gch ·rsp) is replaced by CF(SF(Gch ·rsp)) for
verification. Interestingly, this simple change allows us to compress
rsp in various ways, depending on how F is defined.

5.1 Compressing rsp

Given q, k, n, let Pk,n be the subset of Pn such that

– in the first k columns, the row indices of 1’s are in increasing
order.

– in the last n− k columns, the row indices of 1’s are in increasing
order.

In fact, once the first k columns of a matrix in Pk,n is defined, the
whole matrix is defined. Therefore, every matrix in Pk,n can be rep-
resented as a vector in Fn

2 of Hamming weight k, such that the row
indices of the 1’s in the first k columns are exactly the indices of the
1’s in the vector.
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Theorem 2. For every P ∈ Pn, we have

P = Pis ·
[
P−1
r 0
0 Pc

]
,

for some (Pis, Pr, Pc) ∈ Pk,n × Pk × Pn−k. For every M ∈ Mn, we
have

M = Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
,

for some (Pis, Pr, Pc, Dr, Dc) ∈ Pk,n × Pk × Pn−k × Dk × Dn−k.

One can make use of Theorem 2 to reduce the size of rsp. We
explain the idea using some examples.

Example: PEP with (δr, πr, δc, πc) = ({Ik},Pk, {In−k},Pn−k). In this
case, rsp can be compressed into the corresponding Pis matrix of Q̃
or Q−1 · Q̃. Indeed, the verifier can verify rsp since

CF(SF(Gch · Pis)) = CF(T ·Gch · Pis)

= CF(Pr · T ·Gch · Pis ·
[
P−1
r 0
0 Pc

]
)

= CF(SF(Gch · Pis ·
[
P−1
r 0
0 Pc

]
)).

Example: LEP with (δr, πr, δc, πc) = ({Ik}, {Ik},Dn−k,Pn−k). In this
case, rsp can be compressed into the corresponding Pis, Pr, Dr ma-
trices of Q̃ or Q−1 · Q̃. Indeed, the verifier can verify rsp since

CF(SF(Gch · Pis ·
[
D−1

r P−1
r 0

0 In−k

]
) = CF(T ·Gch · Pis ·

[
D−1

r P−1
r 0

0 In−k

]
)

= CF(T ·Gch · Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
)

= CF(SF(Gch · Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
)).

Note that this is exactly the technique used in [1, 10].
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Example: LEP with (δr, πr, δc, πc) = ({Ik},Pk,Dn−k,Pn−k). In this
case, rsp can be compressed into the corresponding Pis, Dr matrices
of Q̃ or Q−1 · Q̃. Indeed, the verifier can verify rsp since

CF(SF(Gch · Pis ·
[
D−1

r 0
0 In−k

]
) = CF(T ·Gch · Pis ·

[
D−1

r 0
0 In−k

]
)

= CF(Pr · T ·Gch · Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
)

= CF(SF(Gch · Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
)).

Example: LEP with (δr, πr, δc, πc) = (Dk,Pk,Dn−k,Pn−k). In this
case, rsp can be compressed into the corresponding Pis matrix of
Q̃ or Q−1 · Q̃. Indeed, the verifier can verify rsp since

CF(SF(Gch · Pis)) = CF(T ·Gch · Pis)

= CF(Pr ·Dr · T ·Gch · Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
)

= CF(SF(Gch · Pis ·
[
D−1

r P−1
r 0

0 DcPc

]
)).

6 Attacks against PEP and LEP

Disposing of efficiently computable canonical forms may be also help
in cryptanalysing the code equivalence problem. Indeed, consider the
(high level) procedure depicted in Algorithm 1.

Proposition 1. Algorithm 1 has constant success probability ≈ 0.5

and time complexity T = O
(
(TCF + n3) ·

√(
n
k

))
, where TCF is the

time to compute one canonical form. For k = Rn, with R a constant

in [0; 1], it has asymptotic time complexity 2n·τ(R)·
(
1+o(1)

)
, where

τ(R) = 1
2
· h2(R) and h2 is the binary entropy function.

Proof. Because of the birthday paradox, the success probability of
the algorithm is approximately 0.5. The time complexity is derived
by considering that, for each candidate J (resp., J ′) the probabil-
ity that SF fails is constant (and, for growing 1, tends to 1). Also,
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Algorithm 1: Using canonical forms to attack code equiv-
alence
Input: matrices G0, G1 ∈ Fk×n

q

Output: failure or equivalence between G0 and G1

// Create first list

1 Set L = ∅;

2 while |L| <
√(

n
k

)
do

3 Sample J ⊆ {1, · · · , n} of size k;
4 Compute A = SF(G0, J);
5 if A ̸= ⊥ then
6 Compute B = CF(A);
7 if B ̸= ⊥ then
8 Add

(
J,B

)
to L;

// Create second list

9 Set L′ = ∅;

10 while |L′| <
√(

n
k

)
do

11 Sample J ′ ⊆ {1, · · · , n} of size k;
12 Compute A′ = SF(G1, J

′);
13 if A′ ̸= ⊥ then
14 Compute B′ = CF(A′);
15 if B′ ̸= ⊥ then
16 Add

(
J ′, B′) to L′;

// Find collisions and reconstruct the equivalence

17 Search for collisions, i.e., pairs (J,B) ∈ L, (J ′, B′) ∈ L′ such that B = B′;
18 If a collision is found, reconstruct the equivalence

because of the properties in Definition 3, the probability γ(n, k, q)
that CF fails can be is extremely small and it can be neglected. So,
in practice, the amount of times instructions 3–7 are executed is

essentially equal to
√(

n
k

)
. For each candidate J , we compute one

systematic form (with cost n3) and one canonical form (with cost
TCF). For the asymptotics, we consider that

1

n
log2 (T ) =

1

2n
log2

((
n

k

))
+

1

n
log2(n

3 + TCF).

Since TCF is a polynomial function of both n and q, the quantity
1
n
log2(n

3 + TCF) is in o(1). Finally, we consider that
(
n
k

)
=

(
n
Rn

)
=

2n·h(R)
(
1+o(1)

)
.
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Remark 1. To store each list element, several approaches. For in-
stance, each J (resp., J ′) can be represented with n bits or (if sets
are generated using a PRG), we can store the employed seed. For
each B (resp., B′), we can use poly(n, q) memory (since a canonical
form is a matrix) or, more conveniently, we can store only its digest
(and, then, search for collisions in the digests values).

Interestingly, our algorithm does not depend significantly on the
size of the finite field: the only effect of the finite field size is on
the cost of computing Gaussian eliminations and canonical forms.
So, the dependence is only marginal and entirely disappears when
considering the asymptotic regime.

Appendix A compares Algorithm 1 with other known attacks.

7 Defining Canonical Forms for ϵ

This section shows how one can define the canonical forms for dif-
ferent cases of (δr, πr, δc, πc). The approaches in Section 7.1 and
Section 7.2 have been implicitly used in [10] and [1], while the ap-
proaches in other subsections are new. The number of field opera-
tions taken by each algorithm presented in this section is apparently
polynomial in q, k, and n in the worst case.

7.1 When (δr, πr, δc, πc) = ({Ik}, {Ik}, {In−k},Pn−k)

One can define the canonical form of any equivalence class as the
matrix in which the columns are sorted w.r.t. a total ordering defined
on Fk

q . For example, the total ordering can be the lexicographic order.
In this way, for every equivalence class the canonical form is well-
defined, and from any matrix the canonical form can be derived
easily by simply sorting the columns.

7.2 When (δr, πr, δc, πc) = ({Ik}, {In−k},Dn−k,Pn−k)

One can define the canonical form as the unique matrix of which
1) the first nonzero entry of each nonzero column is 1 and 2) the
columns are sorted w.r.t. a total ordering defined on Fk

q . In this way,
for every equivalence class the canonical form is well-defined. Given
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any matrix, to compute the canonical form, one can first scale each
nonzero column to make the first nonzero entry become 1 and then
sort the columns.

7.3 When (δr, πr, δc, πc) = ({Ik},Pk, {In−k},Pn−k)

Given a vector v, we define multiset(v) as the multiset formed by the
entries in v. Consider a partial ordering defined on Fn−k

q such that

– for any distinct v, v′ ∈ Fn−k
q , either v ≤ v′ or v′ ≤ v if multiset(v) ̸=

multiset(v′), and
– for any distinct v, v′ ∈ Fn−k

q , neither v ≤ v′ or v′ ≤ v holds if
multiset(v) = multiset(v′).

Given such a partial ordering on Fn−k
q and a total ordering defined

on Fk
q , for any equivalence class, we define the canonical form as the

matrix of which the rows are sorted w.r.t. to the partial ordering and
the columns are sorted w.r.t. the total ordering, if it exists. For some
equivalence classes such a matrix might not exist. This happens only
when there are two distinct rows that cannot be compared (because
they lead to the same multiset) using the partial ordering in all
matrices in the equivalence class.

Given any matrix, one can derive the corresponding canonical
form by first sorting the rows using the partial ordering and then
sorting the columns using the total ordering. Whether the corre-
sponding canonical form exists can be easily detected during the
step of sorting rows.

Assume that there is a total ordering defined over the set of all
possible multisets of size n− k. One can define the partial ordering
as follows: for any distinct v, v′ ∈ Fn−k

q ,

v ≤ v′ ⇐⇒ multiset(v) ≤ multiset(v′).

There are multiple ways to define the total ordering for multisets.
One reasonably efficient approach is as follows: for any distinct multi-
set S and S ′, let u be the vector obtained by sorting the elements in
S, let u′ be the vector obtained by sorting the elements in S ′, then

S ≤ S ′ ⇐⇒ u ≤ u′,
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where u and u′ are compared using a total ordering defined on Fn−k
q .

Similarly, one can also define the canonical form as the result of
first sorting the columns using a partial ordering defined on Fk

q and
then sorting the rows using a total ordering defined on Fn−k

q .

A lower bound on the success probability of the algorithm above
is shown in Appendix E.

7.4 When (δr, πr, δc, πc) = ({Ik},Pk,Dn−k,Pn−k)

Let p0, . . . , pd−1 ∈ Z be d distinct integers such that

– 0 < p0 < p1 < · · · < pd−1 < q − 1,

– gcd(pi, q − 1) = 1 for all i, and

– char(Fq) is not a factor of any pi.

For efficiency of the algorithm that will be introduced below, it is
reasonable to select pi’s as the smallest d integers that satisfies the
criteria. We define the canonical form of a equivalence class as the
matrix such that

1. for each nonzero column v, the first nonzero entry of the vector

(
∑
i

vp0i , . . . ,
∑
i

v
pd−1

i )

is 1, and

2. the rows and columns are sorted in the way described in Sec-
tion 7.3,

if such a matrix exists.

To derive the systematic form of a matrix, one can carry out
one step to ensure that the first constraint above holds and then
another step to ensure that the second constraint holds. The second
step simply runs the algorithm in Section 7.3. The first step can be
carried out by scaling each nonzero column independently. For each
nonzero column v ∈ Fk

q , we compute a list of d vectors v(0), . . . , v(d−1),

where each v(j) is the unique multiple of v such that
∑

i(v
(j)
i )pj = 1,

or 0 if
∑

i v
pj
i = 0. If v(j) = 0 for all j, ⊥ will be returned. Otherwise,

the column is replaced by the first v(j) which is non-zero.
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7.5 When (δr, πr, δc, πc) = (Dk,Pk,Dn−k,Pn−k)

To derive the canonical form given a matrix A, for each j such that
column j consists of only nonzero elements, we define A(j) as the
result of scaling rows of A so that column j of A(j) is (1, 1, . . . , 1).
If every column contains 0, ⊥ will be returned. Then, for each A(j),
the algorithm in Section 7.4 is applied to obtain a matrix A[j] if ⊥
is not returned. Finally, the canonical form is simply defined as the
smallest A[j] w.r.t. a total ordering defined on Fk×(n−k)

q .

Proposition 2. Given A,B ∈ Fk×(n−k)
q satisfying B = Dr · A · Dc

for some Dr, Dc ∈ Dn−k, such that column j of A (and B) consists
of only nonzero elements. Then B(j) = A(j) ·D′

c for some D′
c ∈ Dn−k.

Proof. Let the elements on the main diagonal of Dr be x0, . . . xk.
Let the elements on the main diagonal of Dc be y0, . . . yn−k. Then
column i of A(j) is (A0,i · A−1

0,j , . . . , Ak−1,i · A−1
k−1,j), while column i of

B(j) is

(x0 ·A0,i · yi ·A−1
0,j · x−1

0 · y−1
j , . . . , xk−1 ·Ak−1,i · yi ·A−1

k−1,j · x
−1
k−1 · y

−1
j ).

Proposition 3. Given A,B ∈ Fk×(n−k)
q satisfying A = Pr · B · Pc

for some Pr, Pc ∈ Pn−k, such that column j of A consists of only
nonzero elements. Let j′ be the row index of 1 in column j of Pc. In
other words, the column permutation represented by Pc maps column
j′ to column j. Then A(j) = Pr ·B(j′) · Pc.

Combining the two propositions, we have

B = Pr ·Dr · A ·Dc · Pc =⇒ P−1
r ·B · P−1

c = Dr · A ·Dc

=⇒ P−1
r ·B(j′) · P−1

c = A(j) ·D′
c

=⇒ B(j′) = Pr · A(j) ·D′
c · Pc.

Therefore, the set of A[j]’s is the same as the set of B[j]’s, and we
conclude that the algorithm leads to the same output for any input
matrix in a equivalence class.
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8 Potential Parameter Sets for LEQ

The crucial quantity to calculate, in this work, is the size of the
signature for the scheme. Hence, we describe it carefully as follows.
First, note that, per Fiat-Shamir, a LEQ signature is composed of
two separate pieces: the responses for each round of the Sigma pro-
tocol, and the hash digest which yields the challenges. The former
can be separated into two subcases, depending whether the response
is truly random or not, since in the former case, it can be compactly
represented via a short seed. Thus, as a first formula, we describe
the size of the signature as

Ciso + Cseeds + ℓsalt + ℓdigest, (1)

where Ciso, Cseeds, ℓsalt and ℓdigest stand for, respectively, the cu-
mulative costs of transmitting the isometries, the seeds, the salt and
the digest. ℓsalt and ℓdigest are specified in Table 4. The other two
costs depend heavily on how the objects are represented, according
to what algorithm is used for canonical form, and what structure is
used to communicate the seeds. For instance, the original LESS sig-
nature scheme [3] transmitted entire monomial matrices, while the
LESS specification document [1] uses a structure similar to the one
described in Section 7.2, and so on. These are summarized below,
keeping in mind that the total number of isometries to be transmit-
ted is given by the scheme parameter w.

Method Cost

[3] ⌈(w · n · (⌈log2(n)⌉+ ⌈log2(q − 1)⌉))/8⌉
7.2 ([1, 10]) ⌈(w · k · (⌈log2(n)⌉+ ⌈log2(q − 1)⌉))/8⌉

7.4 ⌈(w · (n+ k · ⌈log2(q − 1)⌉))/8⌉
7.5 ⌈(w · n)/8⌉

Table 1. Ciso, cost of transmitting isometries, in bytes.

Regarding the transmission of seeds, this hinges mainly on whether
a “seed tree” is used or not. The cost is summarized in Table 2.

Summing up the results from the tables above, we are able to
propose a variety of practical instances for our scheme.
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Method Cost

No seed tree (t− w) · ℓseed
Seed tree (2⌈log2 w⌉ + w · (⌈log2 t⌉ − ⌈log2 w⌉ − 1)) · ℓseed

Table 2. Cseeds, cost of transmitting seeds, in bytes. The formula in the last row is
from [7, Proposition 1]. ℓseed is specified in Table 4.

q k n s t w log2

√(
n
k

)
alg pk sig tree type

127 126 252 2 247 30 123.84

7.3

13939
2481 yes

P
7.5 L
7.4 5789 yes L

7.2 ([1, 10]) 8624 yes L

127 200 400 2 759 33 197.67

7.3

35074
5658 yes

P
7.5 L
7.4 11433 yes L

7.2 ([1, 10]) 17208 yes L

127 274 548 2 1352 40 271.56

7.3

65792
10036 yes

P
7.5 L
7.4 19626 yes L

7.2 ([1, 10]) 30586 yes L

Table 3. Potential parameter sets for LEQ.

Table 3 shows some potential parameter sets for LEQ, along with
the parameter sets with s = 2 of LESS; the latter are reported in the
bottom row of each cell. The column “alg” indicates which choice of
(πr, πc, δr, δc) is used, along with how the canonical form is defined.
The columns “pk” and “sig” indicate the corresponding sizes for
public key and signature, in bytes, respectively. The column “tree”
indicates whether a seed tree is used or not. The column “type”
indicates whether the parameter set is based on (CF-)PEP or (CF-
)LEP.

The column log2

√(
n
k

)
indicates the largest factor in the cost of

of the attack in Section 6. Note that the number of bit operations

taken by the attack is more than
√(

n
k

)
, as there are other nontrivial

factors such as TCF. Giving the exact bit operation counts is out of
the scope of this paper.
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Category 1 Category 3 Category 5

ℓdigest 32 48 64
ℓsalt 32 48 64
ℓseed 16 24 32

Table 4. The lengths in bytes of the digest, the salt, and each seed in the seed tree
in [1, Table 2].
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A Comparison with other solvers

We now consider other solvers for the code equivalence problems,
and compare their running time with the one of our algorithm.

- SSA, [11]: this algorithm can efficiently solve PEP when the hull
of the considered codes is small. Instead, it takes exponential
time when self dual codes (i.e., codes whose hull is equal to the
code itself) are considered; in such a case, it has time complexity
TSSA = O(qk) = O(2Rn·log2(q)). Thanks to a reduction in [12],
SSA can also be used to solve LEP; however, whenever q ≥ 5,
the reduction maps any code into a self-dual code with dimension
k (so, it has time complexity O(qk));

- BOS, [2]: this algorithm reduces PEP to graph isomorphism.
While it is efficient for codes with small hull, it has super-exponential
running time TBOS = O(nRn) when self-dual codes are considered;

- Leon, Beullens, BBPS, [4, 5, 8]: each of these algorithms exhibits
some peculiar aspects and may work only in certain regimes:for
instance, while Leon’s algorithm works regardless of q, Beullens’
algorithm is very likely to fail when q is too small. Both of these
algorithms can solve both PEP and LEP, while the BBPS al-
gorithm improves upon Beullens’ LEP algorithm by exploiting
short codewords instead of subcodes. A precise estimate for the
time complexity of each of these algorithms would depend on
several factors which are sometimes hard to take into account.
For instance, Leon requires to find all codewords whose weight
is not greater than some value w which (heuristically) can be
set slightly larger than the minimum distance: however, at the
best of our knowledge, a formula to set w a priori is not known.
In any case, these three algorithms follows a common principle,
since they do not depend on the hull dimension and require to
find a sufficiently large number of short codewords (or subcodes).
For the sake of simplicity, for these three algorithms we consider
the cost of finding a unique low-weight codeword using Prange’s

18



algorithm56 Hence, for these algorithms we consider a time com-

plexity given by T = O

(
2τPrange(R,q)

(
1+o(1)

))
, where

τPrange(R, q) = h2(R)−
(
1− h−1

q (1−R)
)
· h2

(
R

1− h−1
q (1−R)

)
,

where hq denotes the q-ary entropy function (for details on how
this is derived, see Appendix C).

We are now ready to compare the above algorithms with Algorithm
1; to this end, consider Figure 1. First, SSA and BOS have been
omitted from the comparison since their performances would have
not been competitive (BOS runs in time which is super-exponential
in the code length n while SSA is sometimes faster than our algo-
rithm only if q ≤ 7). We see that, when q is small, our algorithm is
significantly slower than those based on codewords finding. Instead,
when q grows, our algorithm becomes much more competitive and
becomes faster then Prange.

We observe that the time complexity of Prange deteriorates. This
is due to the fact that, as q grows, the minimum distance tends to n−
k (random codes meet the Singleton’s bound with high probability).
Hence, there is a unique information set which would result in a
success for Prange’s ISD: this is corroborated by the fact that h−1

q (1−
R) → 1 − R as q grows and τPrange(R, q) → h2(R). Notice that
this complexity coefficient is twice the one which is achieved by our
algorithm.

B Asymptotic cost of Prange’s ISD

A random code of length n and rate R has minimum distance d = δn,
where δ = h−1

q (1−R) (where hq is the q-ary entropy function). The

5 The choice of Prange’s ISD is meaningful since, for large finite fields, modern algo-
rithms such as Lee&Brickell and Stern seem to perform worse.

6 Even though this provides only a very broad estimate of the actual time complexity,
this allows us to compare with these algorithms in simple and concise way. Remem-
ber that cryptanalysis is not the focus of this paper and the aim of this section is
to show that canonical forms can be a useful tool not only for the design of crypto-
graphic schemes, but also for the cryptanalysis of the code equivalence problem.
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Fig. 1. Comparison between the complexity coefficients for Prange (dashed lines) and
Algorithm 1 (continuous red line), as a function of the code rate.

average number of iterations which are performed by the algorithm
is (

n
k

)(
n−d
k

) =

(
n
Rn

)(
n(1−δ)
Rn

) = 2n·(h2(R)−(1−δ)·h2( R
1−δ ))

(
1+o(1)

)
.

The cost of each iteration is that of one Gaussian elimination: this
is a polynomial term so do not consider it. Then, for the algorithm
we assume a complexity coefficient given by

τPrange(R, q) = h2(R)− (1− δ) · h2

(
R

1− δ

)
.

C Maximum number of permutations
associated to multiset

We study the following problem: find the maximal value that |M(a)|
can have, when a is a length-m vector over Fq. Let ℓi denote the
number of entries of a with value equal to xi ∈ Fq (we are writing
the field as {x0 = 0, x1 = 1, x2, · · · , xq−1}); notice that it must be
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∑q−1
i=0 ℓi = m. The values ℓi allow us to take into account the number

of permutations with repetitions, so that

|M(a)| = m!∏q−1
i=0 ℓi!

=
m!

f(ℓ0, . . . , ℓq−1)
.

Maximizing |M(a)| implies minimizing f(ℓ0, . . . , ℓq−1): as we show
next, this is achieved when all values ℓi are balanced, i.e., the differ-
ence between any pair of values ℓi, ℓj is not greater than 1.

Proposition 4. For any (ℓ0, · · · , ℓq−1) ∈ Nq such that
∑q−1

i=0 ℓi = m,
it holds that

f(ℓ0, · · · , ℓq−1) ≥ (v!)q(v+1)−m ((v + 1)!)m−qv ,

where v =
⌊
m
q

⌋
.

Proof. The proof is crucially based on the simple observation that

∀x, y ∈ N, it holds y!x! > (y − 1)!(x+ 1)! if y − x > 2. (2)

Indeed, let us consider an arbitrary tuple (ℓ0, · · · , ℓq−1), summing
to m, and assume there are two values ℓj, ℓu such that ℓj − ℓu > 2.
Then, there exists a new tuple (ℓ′0, · · · , ℓ′q−1) such that ℓ′u = ℓu if
i ̸= j, u, ℓ′j = ℓj − 1 and ℓ′u = ℓu +1. First, this configuration is valid
since the sum of all the ℓ′i is still equal to m. Also, because of (2),
we have that

f(ℓ0, · · · , ℓq−1)

f(ℓ′0, · · · , ℓ′q−1)

∏q−1
i=0 ℓi!∏q−1
i=0 ℓ

′
i!
=

ℓj!ℓu!

ℓ′j!ℓ
′
u!

=
ℓj!ℓu!

(ℓj − 1)!(ℓu + 1)!
> 1.

We can iterate the procedure until we end up with a tuple where,
for each pair of values, the difference is at most 1. This implies that

there are only two possible values in the tuple, v =
⌊
m
q

⌋
and v + 1.

Let z denote the number of entries with value v: since it must be
vz + (q − z)(v + 1) = m, we find z = q(v + 1)−m. So, the number
of entries with value equal to v + 1 is q − z = m− qv. ⊓⊔

It follows that

∀a ∈ Fm
q , |M(a)| ≤ m!(

⌊m/q⌋!
)q(⌊mq ⌋+1)−m(

(⌊m/q⌋+ 1)!
)m−q⌊mq ⌋

.
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D Other ways to define canonical forms

This section shows some other ways to define canonical forms.

D.1 When (δr, πr, δc, πc) = ({Ik},Pk, {In−k},Pn−k)

Algorithm 2: Canonical form

Input: matrix A ∈ Fk×(n−k)
q

Output: canonical form B ∈ Fk×(n−k)
q

1 for i = 1, · · · , k do
2 Compute Mi = multiset(vi);/* Multiset of i-th row */

3 Compute J = {i ∈ [1; k] | Mi is unique};

// Split rows into two groups, and sort them

4 Set C := matrix whose rows are indexed by J ;
5 Set C′ := matrix whose rows are not indexed by J ;
6 Sort C and C′ so that the multisets of the rows are sorted;

// Apply column permutation

7 Let Pc = column permutation so that columns of C are lexicographically
sorted Sort C′ according to Pc;

// Sort rows of C′ and output canonical form

8 Sort the rows of C′ so that they are in lexicograph order;

9 Set B =

[
C
C′

]
;

10 return B;

In Algorithm 2 we describe a novel computation of canonical
forms. We illustrate the functioning of the algorithm with an exam-
ple.

Example 1. Let A =


5 7 8 2 0 1 3
1 0 0 4 5 9 2
0 0 1 9 2 4 5
2 3 0 1 8 2 6
8 7 5 3 1 0 2
6 3 4 5 2 3 1

. We compute the multisets, and

get
M1 = {0, 1, 2, 3, 5, 7, 8},

M2 = {0, 0, 1, 2, 4, 5, 9},
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M3 = {0, 0, 1, 2, 4, 5, 9},

M4 = {0, 1, 2, 2, 3, 6, 8},

M5 = {0, 1, 2, 3, 5, 7, 8},

M6 = {1, 2, 3, 3, 4, 5, 6}.

First, we observe that M2 = M3 and M1 = M5, while M4 and M6

are unique. So, J = {4, 6} and C =

[
v4
v6

]
and C ′ =


v1
v2
v3
v5

. We now

sort the rows of C: since M4 < M6, the sorted C is identical to the
initial C, hence

C =

[
v4
v6

]
=

[
2 3 0 1 8 2 6
6 3 4 5 2 3 1

]
.

For C ′, we notice that M2 = M3 < M1 = M5, so we sort the rows of
C ′ as

C ′ =


v2
v3
v1
v5

 =


1 0 0 4 5 9 2
0 0 1 9 2 4 5
5 7 8 2 0 1 3
8 7 5 3 1 0 2

 .

Now, we sort the columns of C and C ′, applying the following per-
mutation:

Pc =

(
1 2 3 4 5 6 7
4 5 1 2 7 3 6

)
.

This way, we get

C =

[
0 1 2 2 3 6 8
4 5 3 6 3 1 2

]
, C ′ =


0 4 9 1 0 2 5
1 9 4 0 0 5 2
8 2 1 5 7 3 0
5 3 0 8 7 2 1

 .

Now, we conclude by sorting the rows of C ′: it is enough to swap
rows 3 and 4. Appending C and C ′, we get the canonical form of A.
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D.2 When (δr, πr, δc, πc) = ({Ik},Pk,Dn−k,Pn−k)

Given a matrix A, one can define the canonical form as the output
of the following two-step algorithm.

1. The first step works as follows. First, let S be the set of row
indices such that the rows consist of only nonzero elements. If
S = ∅, ⊥ will be returned. Otherwise, for each i ∈ S, compute
A(i) as the result of scaling columns in A, such that row i of A(i)

is (1, 1, . . . , 1).
2. The second step simply applies the algorithm in Section 7.3 to

each A(i) to obtain A[i]. Then, the smallest A[i] w.r.t. a total
ordering on Fk×(n−k)

q is returned as the canonical form.

D.3 When (δr, πr, δc, πc) = (Dk,Pk,Dn−k,Pn−k)

Given a matrix A, one can define the canonical form as the output
of the following two-step algorithm.

1. The first step works as follows. First, let Sr be the set of row
indices such that the rows consist of only nonzero elements, and
let Sc be the set of column indices such that the columns consist
of only nonzero elements. If Sr = ∅ or Sc = ∅, ⊥ will be returned.
Otherwise, for each (i, j) ∈ Sr × Sc, compute A(i,j) as the result
of scaling columns and rows in A, such that row i and column j
of A(i,j) are both (1, 1, . . . , 1).

2. The second step simply applies the algorithm in Section 7.3 to
each A(i,j) to obtain A[i,j]. Then, the smallest A[i,j] w.r.t. a total
ordering on Fk×(n−k)

q is returned as the canonical form.

E A Lower Bound on Success Probability

Proposition 5. Let A
$←− Fk×(n−k)

q ; then, the canonical form of A
exists with probability is at least γ(n, k, q) =

∏k−1
i=1 1−

iM
qn−k , where

M =

(n− k)! if n− k ≤ q,
(n−k)!(

v!
)q(v+1)−(n−k)(

(v+1)!
)n−k−qv if n− k > q,

where v = ⌊(n− k)/q⌋.
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Proof. We will use ai to indicate the i-th row of A and M(ai) to
denote the set of vectors whose multiset is equal to that of ai. The
probability that A admits the canonical form considered in this sec-
tion can be lower bounded with a simple iterative reasoning.

Let us consider the first two rows of A: regardless of a1, they
will have different multisets if multiset(a2) ̸= multiset(a1). So, the
probability that this pair of rows is valid is

Pr [{a1, a2} is valid] =
∑
ai∈Fn

q

Pr [a2 is valid | a1] · Pr [a1]

=
1

qn−k

∑
ai∈Fn

q

(
1− |M(a1)|

qn−k

)
,

where Pr [a1] is the probability that the first row is equal to a1 and
is equal to q−(n−k) for each a1 (since A is sampled according to the
uniform distribution). Now, let M such that |M(a1) ≤ M | for each
possible a1: we get

Pr [{a1, a2} is valid] ≥
1

qn−k

∑
ai∈Fn

q

(
1− M

qn−k

)
= 1− M

qn−k
.

We now consider a3 and, with analogous reasoning, get that for any
valid pair {a1, a2}, a new vector a3 is valid only if it does not belong
toM(a1) ∪M(a2). Using the upper bound M for both sets, we get
that a3 is valid with probability at least 1 − 2M

qn−k . If we iterate the
reasoning up to the k-th row, we obtain the following probability:

γ(n, k, q) =
k−1∏
i=1

1− iM

qn−k
.

Now, we simply need to derive useful values for M . To this end,
we consider that, when n − k ≥ q, then we can set M = (n −
k)!: indeed, |M(a1)| = (n − k)! holds only if a1 has all distinct
entries while, otherwise |M(a1)| contains fewer vectors. When n −
k > q, we can refine the bound by taking into account that each ai
must necessarily have some repeated entries. The proof on how M
is derived, in this case, is reported in Appendix C. ⊓⊔
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