
Efficient Parallel Evaluation

of Multivariate Quadratic Polynomials on GPUs

Satoshi Tanaka1, Tung Chou2, Bo-Yin Yang2, Chen-Mou Cheng3,
and Kouichi Sakurai1

1 Kyushu University, Fukuoka, Japan
{tanasato@itslab.inf,sakurai@csce}.kyushu-u.ac.jp

2 Academia Sinica, Taipei, Taiwan
{blueprint,by}@crypto.tw

3 National Taiwan University, Taipei, Taiwan
ccheng@cc.ee.ntu.edu.tw

Abstract. QUAD is a provably secure stream cipher, whose security
is based on the hardness assumption of solving multivariate quadratic
polynomial systems over a finite field, which is known to be NP-complete.
However, such provable security comes at a price, and QUAD is slower
than most other stream ciphers that do not have security proofs.

In this paper, we discuss two efficient parallelization techniques for
evaluating multivariate quadratic polynomial systems on GPU, which
can effectively accelerate the QUAD stream cipher. The first approach
focuses on formula of summations in quadratics, while the second ap-
proach uses parallel reduction to summations. Our approaches can be
easily generalized and applied to other multivariate cryptosystems.

Keywords: Stream cipher, efficient implementation, multivariate cryp-
tography, GPGPU.

1 Introduction

1.1 Background

Multivariate cryptography uses multivariate polynomial systems as public keys.
The security of multivariate cryptography is based on the hardness of solving
non-linear multivariate polynomial systems over a finite field [1]. Multivariate
cryptography is considered to be a promising tool for fast digital signature be-
cause it often involves arithmetic operations in smaller algebraic structures com-
pared with traditional public-key cryptosystems like RSA.

Non-linear multivariate polynomials can also be used to construct symmetric-
key cryptosystems, e.g., the QUAD stream cipher [3]. The security of QUAD
depends on the hardness of the multivariate quadratic (MQ) problem. QUAD
has a provable security, but it is slow compared with other symmetric ciphers.
It would be nice if we could accelerate QUAD while having a security proof,
combining the strengths from the two worlds.

D.H. Lee and M. Yung (Eds.): WISA 2012, LNCS 7690, pp. 28–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 29

1.2 Related Works

Berbain et al. proposed several efficient implementation techniques for multivari-
ate cryptography [2]. GPU implementation result of the QUAD stream cipher [5].
In this paper, we reconsider GPU implementations of the QUAD stream cipher.
We note that a preliminary version of this paper, “Fast Implementation and
Experimentation of Multivariate Cryptography,” was presented at the 6th Joint
Workshop on Information Security, 2011. This version includes the results of fur-
ther investigation after the preliminary version was presented at the workshop.

1.3 Contributions

Our main contribution is to accelerate the evaluation of quadratic polynomials
in the QUAD stream cipher. The bottleneck computation in QUAD’s encryption
is to evaluate multivariate quadratic polynomial systems. In particular, we ac-
celerate the computation of the summation in evaluating quadratic polynomials.

We investigated two parallelization strategies to evaluate summations in mul-
tivariate quadratic polynomials. The first approach focuses on formula of sum-
mations in quadratics, while the second uses parallel reduction to summations.
Our techniques apply to multivariate public-key cryptography as well.

Finally, even if QUAD cannot be accelerated a lot by the proposed techniques,
having a GPU implementation is still useful because we will be able to offload
the computation from CPU to GPU on busy servers.

2 Multivariate Cryptography

Multivariate cryptography is a candidate of post-quantum cryptography. In mul-
tivariate cryptography, we can encrypt plaintext to ciphertext by evaluating ap-
propriate multivariate polynomial systems overGFq. Or we can use it to generate
keystream bits as in QUAD. In the rest of this section, we will give an overview
of the multivariate stream cipher QUAD and the problems it faces.

2.1 Multivariate Polynomial Systems

Multivariate Polynomials. A term is a primitive unit which can be denoted
only by using multiplications. A term consists of one constant and some un-
knowns. A monomial consists of a single term, and a polynomial consists a finite
sum of terms, as shown in Equation 1, where xi variables, and α, βi, γi,j , con-
stants.

α+

n∑

i=1

βixi +

n∑

i=1

n∑

j=1

γi,jxixj + . . . (1)

Equation 2 gives a general description of a multivariate quadratic polynomial in
n unknowns. ∑

1≤i≤j≤n

αi,jxixj +
∑

1≤i≤n

βixi + γ (2)

30 S. Tanaka et al.

Multivariate Polynomials Systems and MP Problem. A multivariate
polynomial system which is constructed with n unknowns and m polynomials is
given in Equation 3.

MP (x1, . . . , xn) = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)} (3)

Solving such a system is called the MP problem. It is known as a NP-hard
problem over a finite field [10] even for quadratics.

2.2 QUAD Stream Cipher

QUAD is a stream cipher proposed by Berbain et al. [3] and its security is based
on the MQ assumption.

Keystream Generation. QUAD uses a random multivariate quadratic sys-
tem as a pseudorandom number generator. We can construct QUAD using n
unknowns and a system S consisting of m multivariate quadratic equations over
GF(q). We denote such an instance as QUAD(q, n, r), where r = m − n is the
number of output keystream bits. The sketch illustrating the keystream genera-
tion algorithm is shown in Figure 1. The generator can then output an essentially
endless stream of bits by repeating the above steps.

Fig. 1. Generating keystream

Computational Cost of QUAD. The computational cost of multivariate
quadratics depends heavily on computing quadratic terms. The summation of
quadratic terms requires n(n + 1)/2 multiplications and additions. Therefore,
the computational costs of evaluating one multivariate quadratic is O(n2).
QUAD(q, n, r) requires to compute m multivariate quadratics. Since m = kn,
the computational cost of generating key stream is O(n3).

Security Level of QUAD. The security level of QUAD is based on the MQ
assumption. Berbain et al. [3] proofs that solving QUAD can be reduced to
solving MQ problem. However, according to the analysis of QUAD using the
XL-Wiedemann algorithm proposed by Yang et al. [11], QUAD(256, 20, 20) has
45-bit security, QUAD(16, 40, 40) has 71-bit security, and QUAD(2, 160, 160) has
less than 140-bit security.

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 31

Actually, secureQUADrequires larger constructions suchasQUAD(2, 256, 256)
or QUAD(2, 320, 320).

3 CUDA Computing

3.1 GPGPU

Originally, Graphics Processing Units (GPUs) are processing units for acceler-
ating computer graphics. Recently, some online network games and simulators
require very high amount of computer graphics computation. The GPU perfor-
mance is growing to satisfy such requirements. As a result, GPU has a large
amount of power for computation.

GPGPU is a technique for performing general-purpose computation using
GPUs. In cryptography, it has been used to accelerate the encryption and de-
cryption processes of various cryptosystems. For example, Manavski proposed
an implementation of AES on GPU, which is 15 times faster than on CPU in
2007 [7]. Moreover, Osvik et al. presented a result of an over 30 Gbps GPU im-
plementation of AES in 2010 [9]. On the other hand, GPGPU techniques have
also been used for cryptanalysis. Bonenberger et al. used a GPU to accelerate
polynomial generations in the General Number Field Sieve [4].

GPUs have a SIMD architecture, so it is better to handle several simple tasks
simultaneously. On the other hand, the performance of a GPU core is not higher
than CPU. Therefore, if we use GPU for sequential processing, it is not effective.
In the GPGPU techniques, how to parallelize algorithms is an important issue.

3.2 CUDA

CUDA is NVIDIA’s development environment for GPU based on C language.
Various tools for using GPU existed before CUDA, but they often require hacking
OpenGL or DirectX and hence are not easy to users. CUDA allows more efficient
development of GPGPU by allowing the developers to work in the familiar C
language.

In CUDA’s terminology, “hosts” correspond to computers, while “devices”
correspond to GPUs. In CUDA, the host controls the device. A kernel represents
a unit of computation that a host asks a device to perform. In order to fully
exploit the computational power of a GPU, a program needs to parallelize its
computation in a kernel. A kernel handles some blocks in parallel. A block also
handles many threads in parallel. Therefore, a kernel can handle many threads
simultaneous.

NVIDIA GeForce GTX 580. In this paper, we use NVIDIA GeForce GTX
580 graphics card to perform our experiments. It is a high-end GPU in the
GeForce 500 series, which was released in November, 2010. GTX 580 belongs to
the Fermi architecture family, which is the successor to Tesla, the first-generation

32 S. Tanaka et al.

CUDA-capable architecture. GTX 580 has 16 streaming multiprocessors (SMs),
each of which consists of 32 CUDA cores, as opposed to 8 CUDA cores in Tesla.

4 Parallelization Strategies

4.1 Previous Works by Berbain et al.

Berbain et al. proposed several efficient implementation techniques of computing
multivariate polynomial systems for multivariate cryptography [2]. In this paper,
we use the following strategies from their work.

– Variables are treated as vectors. For example, C language defines int as a
32-bit integer variable. Therefore, we can use int as a 32-vector of boolean
variables. This technique is often referred to as “bitslicing” in the literature.

– We precompute each quadratic term. Because in multivariate quadratic sys-
tems, we must compute the same xixj for every polynomial, so precomputing
helps to save some computations.

– We compute only non-zero terms in GF(2). The probability of xi = 0 is 1/2,
and the probability of xixj = 0 is 3/4. Therefore, we can reduce computa-
tional cost to about 1/4.

4.2 Parallelizing on the GPU

In GPGPU, the most important point is the parallelization of algorithms. Because
the performance of a single GPU core is worse than that of CPU, serial implemen-
tations with GPU are expected to be slower than CPU implementations.

Since the polynomials of a multivariate quadratic system are independent of
each other, parallelization of a system is straightforward.Moreover, we parallelize
the evaluation of each polynomial in a multivariate quadratic system. We propose
two parallelization techniques, as shown in Figure 4.

The Basic Strategy of Parallelization. Let ti,j = αi,jxixj . Summation of
quadratic terms can be considered as summation of every element of a triangular
matrix, as shown on the left side of Figure 2. We assume that other elements from
the matrix are zero. Therefore, we can compute summation of quadratic terms
as summation of a rectangular matrix, as shown on the right side of Figure 2.
Then, we can compute the summation as

∑n
i=1

∑n
j=1 αi,jxixj =

∑n
i=1

∑n
j=1 ti,j

as follows.

1. We compute Sk(x) =
∑n

i=1 tk,i for all k in parallel.
2. We compute

∑n
k=1 Sk(x).

However, such a strategy introduces some overhead caused by the extra unnec-
essary computations.

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 33

Fig. 2. Left: Evaluating quadratics on a triangular matrix. Right: Evaluating quadrat-
ics on a padded rectangle matrix.

Parallelization Method 1. Next we introduce the first strategy to reduce
unnecessary computations. We reshape a triangular matrix to a rectangular ma-
trix as shown in Figure 3, in which method of matrix reshaping is depicted. By
this reshaping, we can efficiently reduce about 25% of the cost for evaluating a
multivariate quadratic polynomial system.

Fig. 3. Reshaping triangular to rectangular matrix

Parallelization Method 2. In the second strategy, we treat a polynomial as
a vector as opposed to a matrix. Assuming that nc is the number of GPU cores,
we separate a vector into nc-subvectors.

Moreover, we use the parallel reduction technique to compute all subvectors
in parallel. The parallel reduction technique works as follows.

1. We substitute the length of subvectors for nc.
2. We add nc/2 + i-th elements to i-th elements.
3. We compute nc = nc/2.
4. While nc is larger than 1, we iterate step 2 and 3.

The entire parallel reduction technique consists of lognc iterations of the above
steps. Therefore, we can evaluate polynomials efficiently.

34 S. Tanaka et al.

Fig. 4. Pallalelization strategies. Left: Strategy 1; right: Strategy 2

4.3 Optimization on GPU Architectures

On GPU implementations, we must consider its characteristics. Together, the
cores on a GPU provide a tremendous amount of computing power, but each
single GPU core is much slower than a CPU core. Therefore, we need to minimize
the number of inactive GPU cores.

Optimization of Matrix Calculation. An NVIDIA GeForce GTX 580 GPU
has 16 SMs, each of which has 32 CUDA cores. Since each SM handles 32 threads
at a time, the number of threads should be an integral multiple of 32. In the
same way, we should make sure that the algorithm can be handled by 16 SMs
in parallel. Together, the total number of threads should be an integral multiple
of 32× 16 = 512.

In parallelization method 1, we can compute an summation in a polynomial
as multiple co-summations of rows of a matrix. An n-unknown quadratic polyno-
mial has n(n+1)/2 monomials. Then the long side of a rectangular matrix that
is reshaped from an n-dimensional triangular matrix has n or n + 1 elements.
Although a number of a long side’s elements can be counted in a process, count-
ing incurs extra cost in the computation. Therefore, we assume that n = 31k,
where k is a natural number. By handling a summation in a polynomial as a
triangular matrix which elements are k-dimensional square submatrices, we can
handle a summation as a 16× 31 rectangle matrix, as shown in Figure 5. Thus
we can parallelize the calculation of a matrix for 16 SMs with 32 CUDA cores
per SM.

In parallelization method 2, we can parallelize a summation by the number
of cores that can efficiently share data. In CUDA, we can share data in a block.
Then we can parallelize a summation by 32 monomials on NVIDIA GeForce
GTX 580. Therefore, we assume that n = 32k, where k is a natural number.
Iterating time of parallelize reduction in a summation is k(32k + 1)/2.

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 35

Fig. 5. Handling as a 16× 31 matrix

Further Optimizations. In order to improve the efficiency, we need to break
down the computation into small chunks of similar computations for parallel
processing. Moreover, GPUs can’t handle conditional branches efficiently, so we
need to handle conditional branches differently than we do on CPU. In this case,
we use a different kernel for each different number of non-zero terms. However,
using a kernel for each possible number of non-zero terms would incur an ex-
tremely large amount of overhead. Therefore, we make kernels just every number
of k. For example, for QUAD(2, 512, 512), the maximum k is 17, so we need only
17 kernels.

4.4 Analysis of Potential Speedup

Parallelization Speedup. Originally, each polynomial in QUAD(q, n, n) re-
quires (n+1)×(n+2)/2 additions and multiplications. Moreover, QUAD(q, n, n)
requires evaluation of 2n polynomials. Using the strategies proposed by Berbain
et al. [3], we can compute each polynomial in QUAD(q, n, n) with (n+1)× (n+
2)/8 additions and multiplications. Therefore, we can compute QUAD(q, n, n)
with n/16 times the cost of evaluating a single polynomial using 32-bit vectors.

Such techniques can be used by CPU implementation as well as GPU im-
plementation. By parallelization on GPU, we can compute QUAD(q, n, n) in
parallel. We can compute multiplications of a polynomial before additions. We
can compute αi,jxixj in n multiplications time by we parallelize multiplications
in each i and compute by every j. When we use a multivariate polynomial sys-
tem over GF(2), we can compute multiplications by reducing monomials with a
strategy of Berbain et al.

Parallelization method 1 with optimizations computes a summation in a poly-
nomial by as a rectangle matrix, which elements are k-dimensional square sub-
matrices. Since NVIDIA GeForce GTX 580 has 16× 32 cores, each submatrices
can be computed on each CUDA cores in parallel. Then, computational time of
summations k-dimensional matrices is k2 additions. Moreover, we should com-
pute submatrices of every polynomials, then it takes mk2; m is the number

36 S. Tanaka et al.

of polynomials divided by 32. After that, we compute row co-summations in
matrices. So we can compute row co-summations at one time, computational
cost of row co-summations is 31 additions. When m ≤ 32 (the number of poly-
nomials ≤ 1024), we can compute row co-summations of all polynomials in once
time. Finally, we compute a summation of row co-summations’ result in 15 addi-
tions. Then, the computational costs of summations of a multivariate quadratic
polynomial system can be denoted by mk2 + 46 additions.

In parallelization method 2, we compute summations by parallel reductions.
Parallel reductions can be computed co-summations of 32 elements on NVIDIA
GeForce GTX 580 at once. Then, co-summations can be computed in 5 additions.
Assuming n = 32k, we can compute co-summations of a polynomial by k(32k+
1)/2 times. Since we can compute 16 co-summations at once, actually, we can
compute co- summations by �k(32k+1)/32� times. When n ≤ 512 = 32×16, we
can compute co-summations at most n/2 times. Finally, we compute summations
of co-summations’ result of a polynomial as parallelization method 1. Then,
the computational costs of summations of a multivariate quadratic polynomial
system can be denoted by (5m+ 1)n/2 additions.

5 Experiments

In this section, we present and discuss experiment results. We used NVIDIA
GeForce GTX 580 GPU, as well as Intel Core i7 875K CPU with 8 GB of
memory.

5.1 Experiment Setup

We implement the evaluation of systems of 2n-polynomials in n-unknowns for
n = 32, 64, 96, . . . , 512 on CPU and GPU. Finally, we compare the results of
GPU and CPU implementations.

CPU Implementation. We implement evaluation of multivariate quadratic
polynomial systems on the CPU by C language. We apply strategies of Berbain
et al. [2] to CPU implementations.

GPU Implementation. We also apply them to GPU implementations. More-
over, we implement evaluation of multivariate quadratic polynomial systems with
the parallelization strategies 1 and 2 as mentioned previously.

5.2 Experiment Results

We present the results of evaluation time of multivariate quadratic systems in Ta-
ble 1. Evaluation time with the parallelization strategy 1 increase in the number
of unknowns n rapidly. On the other hand, the parallelization strategy 2 increase
in n slowly. Therefore, the strategy 2 is more efficient than the strategy 1.

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 37

Table 1. Evaluation time for multivariate quadratic polynomial systems

Unknowns Polynomials Evaluation time (µs)
n 2n CPU Strategy 1 Strategy 2

32 64 2.7 21.758 15.927

64 128 16.9 23.483 15.849

96 192 52.7 24.110 16.071

128 256 118.8 24.325 16.537

160 320 236.2 25.058 17.166

192 384 417.8 29.845 17.184

224 448 656.5 34.549 18.125

256 512 992.5 41.864 18.651

288 576 1505.4 52.442 19.408

320 640 2322.2 71.663 19.841

352 704 3409.2 90.264 20.236

384 768 4906.2 111.951 20.710

416 832 6666.4 146.331 21.420

448 896 8453.5 193.567 21.892

480 960 10545.1 256.538 22.259

512 1024 12902.0 336.299 22.785

Table 2. Encryption thoroughput of QUAD

Throughput[Mbps]
QUAD(2,160, 160) QUAD(2, 320, 320)

CPU 0.646 0.131

GPU Strategy 1 5.086 3.768
Strategy 2 11.693 14.567

Berbain et al. [2] 8.45 —

Chen et al. [5] CPU — 6.1
GPU — 2.6

Futhermore,we compare result ofQUADimplementationswithBerbain et al. [2]
and Chen et al. [5] on QUAD(2, 160, 160) and QUAD(2, 320, 320) in Table2. Un-
fortunately, QUAD(2, 160, 160) with the parallelization strategy 2 is not so fast,
compared with the results of Berbain et al. [2] However, QUAD(2, 320, 320) with
the parallelization strategy 2 is 2.3 times faster than Chen et al. [5] Moreover, it
is faster than QUAD(2, 160, 160). Therefore, we think that strategy 2 is suited to
QUAD(2, n, n), which n is a large number.

6 Conclusions

Wepresented two parallelization strategies for accelerating the evaluation ofmulti-
variate quadratic polynomial systems.AGPU implementationwithparallelization

38 S. Tanaka et al.

strategy 2 is the fastest implementation compared with previous works. Moreover,
itmightbe suited to largefinitefields.The security ofQUADdepends on the scale of
multivariate quadratic polynomial systems.We expectQUADswith the strategy 2
will become efficient and secure stream ciphers. Our approaches can be applied not
only to the QUAD stream cipher but potentially also to other multivariate cryp-
tosystems.

Acknowledgment. This work is partially supported by Japan Science and Tech-
nology agency (JST), Strategic Japanese-IndianCooperative Programme onMul-
tidisciplinary Research Field, which combines Information and Communications
Technology with Other Fields, entitled ”Analysis of Cryptographic Algorithms
and Evaluation on Enhancing Network Security Based onMathematical Science.”
The authors are grateful to Takashi Nishide for his valuable comments on our
proposal.

References

1. Bard, G.V.: Algebraic Cryptranalysis. Springer (2009)

2. Berbain, C., Billet, O., Gilbert, H.: Efficient Implementations of Multivariate
Quadratic Systems. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356,
pp. 174–187. Springer, Heidelberg (2007)

3. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

4. Bonenberger, D., Krone, M.: Factorization of RSA-170,
http://public.rz.fh-wolfenbuettel.de/~kronema/pdf/rsa170.pdf

5. Chen, M.-S., Chen, T.-R., Cheng, C.-M., Hsiao, C.-H., Niederhagen, R., Yang,
B.-Y.: What price a provably secure stream cipher? In: Fast Software Encryption,
2010, Rump session (2010)

6. Liu, F.-H., Lu, C.-J., Yang, B.-Y.: Secure PRNGs from Specialized Polynomial
Maps over Any Fq. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS,
vol. 5299, pp. 181–202. Springer, Heidelberg (2008)

7. Manavski, S.: CUDA compatible GPU as an efficient hardware accelerator for AES
cryptography. In: 2007 IEEE International Conference on Signal Processing and
Communications, pp. 65–68 (2007)

8. NVIDIA CUDA, http://developer.NVIDIA.com/object/CUDA.html

9. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast Software AES Encryption.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer,
Heidelberg (2010)

10. Patarin, J., Goubin, L.: Asymmetric cryptography with s-boxes. In: First Interna-
tional Conference on Information and Communication Security, pp. 369–380 (1997)

11. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 290–308. Springer, Heidelberg
(2007)

http://public.rz.fh-wolfenbuettel.de/~kronema/pdf/rsa170.pdf
http://developer.NVIDIA.com/object/CUDA.html

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 39

A Program Sources of Evaluating a 320-Unknowns
640-Polynomials System

A.1 CPU Implementaions

#include <stdio.h>
#include <stdlib.h>

/* Extract non-zero unknowns */
int checkXX(int *x, int *x1) {

int i, k;
for (i = 0; i < 321; i++) if (x[i]) { x1[k] = i; k++; }
if (k & 0x01) { x1[k] = 321; k++; }
return k;

}

/* Evaluate a system. */
int evaluateSystem(int *x1, int *S, int ***A, int k) {

int i, j, l, tx1, tx2, tx3;
for (i = 0; i < k / 2; i++) {
tx1 = x1[i]; tx2 = x1[k-i-1];
for (j = 0; j < k; j++) {
tx3 = xx[j];
for (l = 0; l < 20; l++) S[l] = S[l] ^ (A[l][tx1][tx3] | A[l][tx2][tx3]);

}
}
return k;

}

int main(void) {
int ***A, *x; /* A: coefficients: 20x321x321, x: unknowns */
int *x1, Nx1; /* x1: non-zero unknowns. Nx1: the number of x1s */
Nx1 = checkXX(x, x1); /* Extract non-zero variables */
(void)evaluateSystem(x1, KS, A, Nx1); /* Evaluate a system */
return 0;

}

A.2 GPU Implementations

Overview
#include <stdio.h>
#include <stdlib.h>
#include <cutil.h>
#include <cuda runtime.h>

int main(int argc, char** argv) {

40 S. Tanaka et al.

int *x, *x1, *Gx1, Nx1, *S, *T1, *T2, *T3, *A;
Nx1 = checkXX(x, x1); /* Extract non-zero variables */
(*) Evaluating a multivariate quadratic polynomial system

return 0;
}

Evaluating a System with Parallelization Strategy 1
/* bx: blockIdx.x, by: blockIdx.y, tx: threadIdx.x, ty: threadIdx.y */
/* Reshape from a triangular matrixt to a rectangle matrix */
global void SetArray6(int *xx, int *Axx) {
shared int Pxx1[192];

int i, j, k;
i = (by << 4) + bx; j = (ty << 5) + tx; k = i * 192 + j;
Pxx1[j] = xx[j]; syncthreads();
if (i < j) {
Axx[k] = (Pxx1[i] * 322) + Pxx1[j-1];

} else {
Axx[k] = (Pxx1[191-i] * 322) + Pxx1[191-j];

}
}

/* Compute a row summation of a submatrix n=161-192 */
global void ComputeSRow6(int *Axx, int *T, int *A) {
int i, j, k, t1, t2, t3, t4, t5, t6, *p1, *p2;
i = ((ty << 4) + bx) << 5) + tx; j = 3072 * by; k = i + j;
p1 = Axx + (6 * i); p2 = A + (103684 * by);
t1 = *p1++; t2 = *p1++; t3 = *p1++; t4 = *p1++; t5 = *p1++; t6 = *p1;
T[k] = *(p2+t1) ^ *(p2+t2) ^ *(p2+t3) ^ *(p2+t4) ^ *(p2+t5) ^ *(p2+t6));

}

/* Compute a culumn summation of a submatrix n=161-192 */
global void ComputeSCul6(int *S, int *T) {
int i, t1, t2, t3, t4, t5, t6, *p;
i = (ty << 9) + (bx << 5) + tx; p = S + (6 * i);
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++; t5 = *p++; t6 = *p;
T[i] = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6;

}

/* Compute a row summation of a 32x16 matrix */
global void ComputeRow(int *S, int *T) {
int i, k1, k2, k3, k4, t1, t2, t3, t4, t5, t6, t7, t8, *p;
i = (tx << 4) + bx; p = S + (i << 5);
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
t5 = *p++; t6 = *p++; t7 = *p++; t8 = *p++;

k1 = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7 ^ t8;

Efficient Parallel Evaluation of Multivariate Quadratic Polynomials on GPUs 41

t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
t5 = *p++; t6 = *p++; t7 = *p++; t8 = *p++;

k2 = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7 ^ t8;
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
t5 = *p++; t6 = *p++; t7 = *p++; t8 = *p++;

k3 = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7 ^ t8;
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
t5 = *p++; t6 = *p++; t7 = *p++; t8 = *p++;

k4 = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7 ^ t8;
T[i] = k1 ^ k2 ^ k3 ^ k4;

}

/* Compute a culumn summation of a 32x16 matrix */
global void ComputeSCul(int *S, int *T) {
int k1, k2, t1, t2, t3, t4, t5, t6, t7, t8, *p;
p = S + (tx << 4);
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
t5 = *p++; t6 = *p++; t7 = *p++; t8 = *p++;

k1 = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7 ^ t8;
t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
t5 = *p++; t6 = *p++; t7 = *p++; t8 = *p++;

k2 = t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7 ^ t8;
T[threadIdx.x] = k1 ^ k2;

}

(*) Evaluating a multivariate quadratic polynomial system in main function
cudaMemcpy(Gx1, x1, 352 * sizeof(int), cudaMemcpyHostToDevice);
switch (Nx1) {
case 6: /* Nx1 = 161-192 */
/* Bl[i]: dim3(16, i, 1), Th[i]: dim3(32, i, 1) */
SetArray6<<<Bl[6], Th[6]>>>(Gx1, GAxx);
ComputeSRow6<<<Bl[20], Th[6]>>>(GAxx, T1, A);
ComputeSCul6<<<Bl[1], Th[20]>>>(T1, T2);
break;

case 5: /* Nx1 = 129-160 */
...

}
ComputeRow<<<16, 20>>>(T2, T3);
ComputeCul<<<1, 20>>>(T3, S);

Evaluating a System with Parallelization Strategy 2
/* bx: blockIdx.x, by: blockIdx.y, tx: threadIdx.x */
/* Divide a quadratic polynomial as sub-vector */
global void setArray20(int *x1, int *Axx, int *A) {

42 S. Tanaka et al.

shared int X[320];
int NH, x0, i, j, Ai;
X[tx] = x1[tx+1]; syncthreads();
x0 = x1[0]; Ai = ((X[bx] * (321-X[bx])) >> 1) + X[tx] - X[bx] - 1;
i = (bx * xx0) - (((bx-1) * bx) >> 1) + tx -bx - 1; NH = ((x0-1)*x0) >> 1;
if (tx < bx)
for (j = 0; j < 20; j++) { Axx[i] = A[Ai]; i += NH; Ai += 103684; }

}
}

/* Compute summations of sub-vectors */
global void compLog(int *Axx, int *T) {
shared int sm[512];
int i = (by*gridDim.x + bx) << 9;
smem[tx]=Axx[i+tx]; syncthreads();
if (tx < 256) sm[tx] ^= sm[tx+256]; syncthreads();
if (tx < 128) sm[tx] ^= sm[tx+128]; syncthreads();
if (tx < 64) sm[tx] ^= sm[tx+64]; syncthreads();
if (tx < 32) {
sm[tx] ^= sm[tx+32]; sm[tx] ^= sm[tx+16]; sm[tx] ^= sm[tx+8];
sm[tx] ^= sm[tx+4]; sm[tx] ^= sm[tx+2]; sm[tx] ^= sm[tx+1];

}
if (tx == 0) T[i+bx] = sm[0];

}

/* Compute summations of a system */
global void compLastLog(int *T1, int *S) {
shared int sm[256];
int i = bx << 8;
sm[tx] = T1[threadIdx.x+i]; syncthreads();
if (tx < 128) sm[tx] ^= sm[tx+128]; syncthreads();
if (tx < 64) sm[tx] ^= sm[tx+64]; syncthreads();
if (tx < 32) {
sm[tx] ^= sm[tx+32]; sm[tx] ^= sm[tx+16]; sm[tx] ^= sm[tx+8];
sm[tx] ^= sm[tx+4]; sm[tx] ^= sm[tx+2]; sm[tx] ^= sm[tx+1];

}
if (tx == 0) S[bx]=sm[0];

}

(*) Evaluating a multivariate quadratic polynomial system in main function
cudaMemcpy(Gx1, x1, (x1[0]+1) * sizeof(int), cudaMemcpyHostToDevice);
setArray20<<<x1[0], x1[0]>>>(Gx1, GAxx, A);
compLog<<<Bl[Nx1], 512>>>(GAx1, T1); /* Bl[i]: dim3(i,20,1) */
compLastLog<<<20, 256>>>(T1, S);

	Efficient Parallel Evaluationof Multivariate Quadratic Polynomials on GPUs
	Introduction
	Background
	Related Works
	Contributions

	Multivariate Cryptography
	Multivariate Polynomial Systems
	QUAD Stream Cipher

	CUDA Computing
	GPGPU
	CUDA

	Parallelization Strategies
	Previous Works by Berbain et al.
	Parallelizing on the GPU
	Optimization on GPU Architectures
	Analysis of Potential Speedup

	Experiments
	Experiment Setup
	Experiment Results

	Conclusions
	References

