
A Closer Look at the Guo–Johansson–Stankovski
Attack Against QC-MDPC Codes

Tung Chou, Yohei Maezawa, and Atsuko Miyaji

Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka

565-0871, Japan
blueprint@crypto.tw, maezawa@cy2sec.comm.eng.osaka-u.ac.jp,

miyaji@comm.eng.osaka-u.ac.jp

Abstract. In Asiacrypt 2016, Guo, Johansson, and Stankovski pre-
sented a reaction attack against QC-MDPC McEliece. In their attack,
by observing the difference in failure rates for various sets Φd of error
vectors, the attacker obtains the distances between 1’s in the secret key
and can thus recover the whole secret key. While the attack appears to be
powerful, the paper only shows experiment results against the bit-flipping
algorithm that uses precomputed thresholds, and the explanation of why
the attack works does not seem to be convincing.
In this paper, we give some empirical evidence to show that the Guo–
Johansson–Stankovski attack, to some extent, works independently of
the way that the thresholds in the bit-flipping algorithm are chosen.
Also, by viewing the bit-flipping algorithm as a variant of “statistical
decoding”, we point out why the explanation of the Guo–Johansson–
Stankovski paper is not reasonable, identify some factors that can affect
the failure rates, and show how the factors change for different Φd.

1 Introduction

In 1978, McEliece presented in his seminal paper [6] the first code-based public-
key encryption system. The paper opens the area of code-based cryptography,
which is considered as an important branch of the post-quantum cryptography
today. The McEliece crpytosystem has stood firmly for 40 years and is thus
considered rather confidence-inspiring. However, the public-key size (typically at
the scale of 1 megabyte) makes it hard to deploy the scheme in some scenarios.

In order to solve the problem of key size, in 2013, Misoczki, Tillich, Sendrier,
and Barreto introduced the usage of QC-MDPC codes for McEliece [7]. Com-
pared to the conventional McEliece system, QC-MDPC enjoys much smaller

This work is partially supported by JSPS KAKENHI Grant (C) (JP15K00183),
Microsoft Research Asia, CREST (JPMJCR1404) at Japan Science and Tech-
nology Agency, the Japan-Taiwan Collaborative Research Program at Japan Sci-
ence and Technology Agency, and Project for Establishing a Nationwide Prac-
tical Education Network for IT Human Resources Development, Education Net-
work for Practical Information Technologies. Permanent ID of this document:
eac422391e669b6d7bbaf8d29c49d2ad. Date: 2018.11.2.

key sizes (typically at the scale of a few kilobytes). Despite the large advantage
in key size, the decoding algorithm, the so-called “bit-flipping algorithm”, is a
probabilistic algorithm. Even worse, there is no satisfying way to evaluate the
decoding failure rate when using the bit-flipping algorithm.

In 2016, Guo, Johansson, Stankovski presented in their paper [8] a reaction
attack against QC-MDPC McEliece. In their attack, by observing the difference
in failure rates for various sets Φd of error vectors, the attacker obtains the
distances between 1’s in the secret key and can thus recover the whole secret
key. The Guo–Johansson–Stankovski attack appears to be quite effective as long
as the decoding failures can be observed.

To show the effectiveness of the attack, [8] uses one specific variant of the bit-
flipping algorithm: the variant that uses precomputed thresholds. As shown in
some papers (e.g., [9]), there are many variants which performs better (in terms
of decoding failure rate) than the one with precomputed thresholds. This invokes
the natural questions: is the Guo–Johansson–Stankovski attack still effective
when applied to other variants? Also, although some arguments are given in [8]
to show why the attack works, the arguments are unfortunately not convincing
to us.

In this paper, we first show that the Guo–Johansson–Stankovski attack works
against a rather conservative variant of the bit-flipping algorithm. From the re-
sults, we conclude that there might be some factor that naturally causes different
failure rates for different Φd’s. We then discuss about one such factor and show
the corresponding experiment results. Furthermore, we also discuss how to view
the bit-flipping algorithm as statistical decoding. From such a viewpoint, it can
be seen why the explanation in [8] does not seem to be reasonable, and it is
shown in detail how the various factors which can affect the failure rates change
between different Φd.

The organization of the paper is as follows. Section 2 gives a review on
some basic concept related to the Guo–Johansson–Stankovski attack. Section 3
discusses about the effectiveness of Guo–Johansson–Stankovski attacks against
different variants of the bit-flipping algorithm. Section 4 discusses how the bit-
flipping algorithm can be viewed as statistical decoding and identifies two factors
that can affect the failure rate. Section 5 tries to give a unified view of how Guo–
Johansson–Stankovski attack works in the CPA case and the CCA case.

2 Preliminaries

In this section, we give a brief review on the basic concepts of QC-MDPC codes,
the bit-flipping algorithm, and the Guo–Johansson–Stankovski attack.

2.1 QC-MDPC Codes

“MDPC” stands for “moderate-density-parity-check”. As the name implies, an
MDPC code is a linear code with a “moderate” number of non-zero entries in
a parity-check matrix H. In some sense, MDPC codes are simply LDPC codes

2

with H with sufficiently high density such that H cannot be easily recovered
when used in code-based cryptography (which is a rather ambiguous definition).

For ease of discussion, in this paper it is assumed H ∈ Fr×n
2 where n = 2r,

even though some parameter sets in [7] allow n = 3r or n = 4r. H can be viewed
as the concatenation of two square matrices, i.e.,

H =
[
H(0)|H(1)

]
,

where H(i) ∈ Fr×r
2 . Each row of H contains a moderate number of 1’s.

“QC” stands for “quasi-cyclic”. Being quasi-cyclic means that each H(i) is
cyclic. For ease of discussion, one may consider

H
(k)
(i+1) mod r,(j+1) mod r = H

(k)
i,j ,

even though [7] allows a row permutation on H. Note that being quasi-cyclic
implies that H has a fixed row weight w. The following is a quasi-cyclic matrix
with r = 5 and w = 4:

1 0 1 0 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 0

 .

One can use QC-MPDC codes for the McEliece (as in [7]) or Niederreiter [10]
(as in [11]) cryptosystem. One noticeable difference between the QC-MDPC
McEliece/Niederreiter and traditional McEliece/Niederreiter is that there is no
need to permute the columns to obtain the public keys; the public keys are just
systematic generating matrices or systematic parity-check matrices. This allows
us to maintain the quasi-cyclic structure and thus save the public-key size.

The number of errors a code is able to correct is often denoted as t. Since
there is no good way to figure out the minimum distance for a given QC-MDPC
code, t is usually merely an estimated value. In this paper, unless explicitly
stated otherwise, we will consider the parameter set (r, w, t) = (4801, 90, 84).
This parameter set is evaluated to have a 80-bit security level in [7], and it is
the one targeted by [8].

For the discussion in this paper, we reintroduce the concept of “distance
spectrum” presented in [8]. The distance spectrum D(v) for v ∈ Fr

2 is defined as
the multi-set that contains distances of 1’s in the vector, where the distance is
defined in a cyclic way:

D(v) = {min(j − i, i− j + r) | v[i] = v[j] = 1, i < j}.

The distance spectrum of a r × r cyclic matrix is defined to be the distance
spectrum of any row of the matrix. We use D(v)[d] to denote the multiplicity of
d ∈ {1, . . . , br/2c} in the distance spectrum.

3

2.2 The Bit-flipping Algorithm

As described in [7], the bit-flipping algorithm is a probabilistic, iterative algo-
rithm for decoding LDPC codes. The algorithm takes a noisy codeword y = c+e
as input. In each iteration, some of the entries of (the current version of) the
noisy codeword y′ are considered to be more likely to be erroneous, and the bits
are flipped to obtain a new (possibly) noisy codeword. In the simplest version of
the algorithm, iterations are repeated until a codeword c′ is reached. Our hope
is that c = c′ so that decoding is successful.

Each iteration starts with computing the syndrome s of the current noisy
codeword. Each entry si then indicates whether the noisy codeword satisfies the
corresponding parity-check equation or not: if si = 1, the noisy codeword does
not satisfy the parity check defined by the i-th row of H (denoted by Hi). The
number of unsatisfied parity checks

uj = |{Hi,j | si = 1}|

for each position of the n positions are then collected to form a vector u. The
vector u serves as an indicator of how likely it is for the positions to be in error:
the larger uj is, the more likely the position is presumed to be in error. Then,
y′j is flipped if the corresponding uj is considered to be “large enough”. Note
that a simple way to compute u is to sum up all Hi such that si = 1, where the
summation is done in Zn.

Now the remaining problem is, which bits should be flipped given the vector
u? In [7] two possibilities are given:

– Flip y′i if ui ≥ Tj , where Tj is a precomputed threshold for the iteration j.
– Flip y′i if ui ≥ max(u)− δ, where δ is a predefined small value ([7] proposed

to use δ = 5).

We note that, as shown in [9], there are also many other ways to set the thresh-
olds. In particular, [9] proposed to modify y′i in an “in-place” fashion; one can
consider this as allowing to flip at most one y′i in each iteration. In the remaining
of this paper, we will focus on “out-of-place” decoders such as the ones given
in [7], where in each iteration we flip all the y′i with ui greater or equal to the
threshold.

2.3 The Guo–Johansson–Stankovski Attack

In [8], Guo, Johansson, and Stankovski presented an attack against the QC-
MDPC McEliece scheme [7]. Their attack is a reaction attack: the attacker sends
a bunch of ciphertexts to the private-key holder, and by observing whether the
decodings are successful or not, the attacher is able to recover the secret key.
They showed that the attack works in two settings, the “CPA case” and the
“CCA case”.

The CPA case essentially means that the sender is able to choose the error
vector for each ciphertext. The attack works as follows.

4

1. For each distance d in {1, . . . , br/2c}, generate a set Φd of weight-t error
vectors. Each element e ∈ Φd has about t/2 pairs on 1’s that are separated
by distance d, and all the 1’s lie in the first block of e.

2. Send the vectors in all Φd to the secret-key holder and observe the failure
rate Pd for each Φd.

3. Generate a figure that shows the points (d, Pd). Pd will then form several
non-overlapping groups, and each d will then be classified into one of the
group based on Pd. The group with the highest failure rate will then contain
all the distances with multiplicity 0, and the group with the second highest
failure rate will contain distances with multiplicity 1, and so on.

4. With the multiplicities for each d, which essentially shows D(H(0)), run [8,
Algorithm 2] to obtain H(0). The algorithm essentially enumerates all can-
didates of H(0) that fit the distance spectrum. Once H(0) is obtained, H(1)

can also be obtained easily.

In the CCA case, the sender does not have the ability to choose the error
vector. One can consider that the error vectors are hash outputs. The attack
works as follows.

1. Generate a bunch of ciphertext and let Φ be the corresponding set of error
vectors. For each distance d in {1, . . . , br/2c}, define Φd to be the set that
contains all elements in Φ that has distance d; that is,

Φd = {e ∈ Φ | d ∈ D(e(0))}

2. Send the vectors in all Φ and observe the failure rate Pd for each Φd.
3. Generate a figure that shows the points (d, Pd). Pd will then form several

non-overlapping groups, and each d will then be classified into one of the
group based on Pd. The group with the highest failure rate will then contain
all the distances with multiplicity 0, and the group with the second highest
failure rate will contain distances with multiplicity 1, and so on.

4. With the multiplicities for each d, which essentially shows D(H(0)), run [8,
Algorithm 2] to obtainH(0). OnceH(0) is obtained,H(1) can also be obtained
easily.

Note that, to demonstrate the effectiveness of the attack, [8] uses the bit
flipping algorithm with precomputed thresholds (without specifying the actual
thresholds). There is no evidence in [8] that the attack can work when the
thresholds are chosen in other ways, e.g., when thresholds are set to be max(u)−
δ. In [8] some arguments are given to show why the attack works, but as we will
discuss in Section 4.2 the explanation has some flaws.

3 Effectiveness of the Guo–Johansson–Stankovski Attack

In [8], it is shown that the attack works when the thresholds are predefined fixed
values. This naturally causes the doubt that whether the attack can really works
when the thresholds are chosen in other ways (in particular, in more conservative

5

0.000610

0.000615

0.000620

0.000625

0.000630

0.000635

 0 500 1000 1500 2000

de
co

di
ng

 fa
il

ur
e

ra
te

distance

(a) CPA case

0.000445

0.000450

0.000455

0.000460

0.000465

0.000470

 0 500 1000 1500 2000

de
co

di
ng

 fa
il

ur
e

ra
te

distance

(b) CCA case

Fig. 1. Decoding failure rates for Φd’s. For the CPA case (n, r, w, t) =
(9602, 4801, 90, 84). For the CCA case (n, r, w, t) = (9602, 4801, 90, 90). For the CPA
case |Φd| = 106. For the CCA case we generate is 2.4 · 109 error vectors in total.

ways). In this section, we try to give some empirical evidence and argue that the
Guo–Johansson–Stankovski attack, to some extent, is independent of the way
the thresholds are chosen.

3.1 Experiment Results

To understand how the Guo–Johansson–Stankovski attack behaves when the
thresholds are chosen in other ways, we consider the other option described
in [7]: to use max(u) − δ as the thresholds. In particular, we use δ = 0, as this
is more conservative than any δ > 0. Using max(u) as thresholds is apparently
the most conservative strategy among the “out-of-place” decoders. The results
are in Figure 1. Note that, for the CCA case, in order to increase the failure
rate, we increase t to 90. As shown in the figure, the failure rate decreases as the
multiplicity increases. Such phenomena has been shown in [8] for precomputed
thresholds.

3.2 An Indicator of the Hardness of Decoding

The experiment result in the previous subsection causes the following questions
to rise: can it be that the Guo–Johansson–Stankovski attack actually works
independent of the thresholds? In other words, is there some reason that makes
it intrinsically easier to decode vectors in Φd when the multiplicity of d gets
larger? To answer the question, we would like to have an (possibly heuristic)
indicator for the hardness of decoding when given in H and e. Our hope is that
the indicator shows that Φd gets harder to decode as the multiplicity of d gets
larger.

Recall that in each iteration of the bit-flipping algorithm, the ri’s with larger
ui’s are flipped. As some non-erroneous positions ri might have ui that are
greater than the threshold, it is possible that some non-erroneous positions are
flipped. Roughly speaking, how much the ui’s for the erroneous positions and the

6

9.2

9.4

9.6

9.8

0 1 2 3 4

Δu

multiplicity

(a) The CPA case

9.295

9.300

9.305

9.310

9.315

0 1 2 3 4

Δu

multiplicity

(b) The CCA case

Fig. 2. Relationship between ∆u and multiplicity.

non-erroneous positions are separated from each other determines how likely it is
to distinguish the two cases. To quantify the idea, we thus consider the differences
of the erroneous positions and the difference of non-erroneous positions. In other
words, we define

∆u =
∑
ei=1

ui/t−
∑
ei=0

ui/(n− t)

and use it as the indicator.
The experiment results are given in Figure 2. As shown in the figure, in both

CPA and CCA cases, ∆u increases as the multiplicity increases. Therefore, when
∆u is considered, it seems that it should be easier to decode when the multiplicity
increases. This matches our experiment results in the previous subsection and
the results shown in [8].

4 A Deeper Look

In this section, we take a deeper look at the behaviour of the bit flipping al-
gorithm to see what makes the difference in ∆u. In particular, we will consider
the bit-flipping algorithm in the view of “statistical decoding” and identify the
factors that affect ∆u.

4.1 Statistical Decoding

The statistical decoding algorithm described in [12] works as follows. Given a
noisy codeword y = c+ e ∈ Fn

2 and a reasonably-large set Hw ⊂ Fn
2 of weight-w

vectors, the algorithm starts with computing

u =
∑

h∈Hw, hyT=1

h ∈ Zn.

Then a set I = {i1, . . . , ik} is chosen such that ui1 , . . . , uik are the smallest
entries in u. The set I is then considered as the “information set” (which means

7

1840

1860

1880

1900

1920

1940

0 1 2 3 4

|s|

multiplicity

(a) |s| for each multiplicity, CPA case

0.0046

0.0048

0.0050

0.0052

0.0054

0 1 2 3 4

Δu /|s|

multiplicity

(b) ∆u/|s| for each multiplicity, CPA
case

1916.0

1916.5

1917.0

1917.5

1918.0

0 1 2 3 4

|s|

multiplicity

(c) |s| for each multiplicity, CCA case

0.0048475

0.0048500

0.0048525

0.0048550

0.0048575

0.0048600

0 1 2 3 4

Δu /|s|

multiplicity

(d) ∆u/|s| for each multiplicity, CCA
case

Fig. 3. The values for |s| and ∆u/|s| for each multiplicity.

eij are all 0), which can be used to decode y easily. Note that finding Hw can
be a hard problem itself.

At this moment the reader should notice that statistical decoding is quite
similar to the bit-flipping algorithm. Indeed, by letting Hw be the set of rows
of the sparse parity-check matrix, the bit-flipping algorithm works essentially
in the same way as statistical decoding. Therefore, the two algorithms can be
considered to work in the same spirit: the only difference is that the bit-flipping
algorithm works in an iterative way, and instead of the smallest entries in u the
bit-flipping algorithm consider the largest entries in order to locate the positions
in error.

In [12], it was discussed why such a simple algorithm actually works. For
each h such that hyT = 1, since the weight of h is only w, the non-zero entries
are more likely to be in error. Let i be a nonzero position in h and hyT = 1, let
p+w be the probability that ei = 1 and q+w be the probability that ei = 0, [12]
pointed out that, as long as w < n/2, we have p+w > q+w . Such bias means that
we can obtain a small amount of information about e for each h that satisfies
hyT = 1, and summing up all such h’s results in the vector u where the erroneous
positions tend to have larger values and the non-erroneous positions tend to have
smaller values.

8

We can view such a bias in a different but equivalent way. For each h with
hyT = 1, the entries in u which correspond to the non-zero entries in h will be
increases. The bias stated above indicates that, on average, the increase in the
erroneous positions (ui with ei = 1) must be larger than the increase in the
non-erroneous positions (ui with ei = 0). To be more precise, let

` = |{j | hj = ej = 1}|;∑
ei=1 ui/t would increase by `/t, while

∑
ei=0 ui/(n − t) would increase by

(w − `)/(n− t). Taking (n, r, w, t) = (9602, 4801, 90, 84) as example, this means
that each h would create a difference of at least

1/84− (90− 1)/(9602− 84) ≈ 0.00255.

By summing up all such h’s, a noticeable difference in
∑

ei=1 ui/t and
∑

ei=0 ui/(n−
t) can be created.

From the view above, there are two important factors that would affect the
result.

– The first factor is the size of Hw. It is apparently desirable to have a larger
Hw so that we can make ∆u larger. In the bit flipping algorithm, the size of
Hw corresponds to the syndrome weight |s|, as each row of the parity-check
matrix can be considered as h in statistical decoding.

– The second important factor is how much we can separate the two cases
for each h, on average for each h with hrT = 1. Note that the larger ` is,
the more we can separate the two cases. From the view of the bit-flipping
algorithm, this is simply ∆u/|s|.

We thus look at the relationship between |s|, ∆u/|s| and the multiplicity; the re-
sult is shown in Figure 3. As shown in the figure, when the multiplicity increases,
|s| decreases while ∆u/|s| increases. Since ∆u also increases with the multiplicity,
it is clear that ∆u/|s| increases at a faster rate than |s| decreases. From the view
of statistical decoding, when considering |s| only, it seems that the failure rate
should get higher as the multiplicity increases. However, the increase in ∆u/|s|
probably compensates for the decrease in |s|, and thus eventually we still have a
lower failure rate for hight multiplicity. We note that similar observation on |s|
has been presented in [13], so we do not take the credit for this part.

The results in Figure 2 and 3 do not depend on the thresholds of the bit-
flipping algorithm. However, as the change in the distribution of u for different
multiplicity is visible to the decoder, it seems possible to design the thresholds
such that the failure rate increases as the multiplicity increases. We thus stress
that the discussion above on the easiness of decoding with respect to |s| and
∆u/|s| does not take into account how the thresholds are determined.

4.2 Explanation of Guo–Johansson–Stankovski Paper

In [8], in addition to the description of the attack itself, the authors also tried
to give some arguments about why the attack works. Similar to the discussion

9

in the previous subsection, for each row (say row i) of H, we can define

`i = |{j | Hi,j = ej = 1}|.

Then `i indicates how many entries of u will be correctly changed (and thus
how many will be wrongly changed), after adding Hi into u. Indeed, assum-
ing that si = 0, w − `i entries would be correctly changed and `i would be
wrongly changed; Assuming that si = 1, `i entries would be correctly changed
and w − `i would be wrongly changed. One can thus obtain the following table
(essentially [8, Table 2]).

`i #(right change) #(wrong change)

0 w 0
1 1 w − 1
2 w − 2 2
3 3 w − 3
...

...
...

[8] thus concludes that Hi’s with an even `i help to decode, while Hi’s with an
odd `i gives a negative effect on decoding. [8] also concludes that it is desirable
to have more Hi’s with smaller, even `i.

To show the relationship of the argument above and the attack, they consider
two cases in the CPA scenario:

– In CASE-0, the error vectors are from Φd where d /∈ D(H(0)), while
– in CASE-1, the error vectors are from Φd where d ∈ D(H(0)).

Their experiment results are shown in the following table (essentially [8, Ta-
ble 3]).

`i CASE-0 CASE-1

0 0.4485 0.4534
1 0.3663 0.3602
≥ 2 0.1852 0.1864

As shown in the table, in CASE-1 the ratio of `i = 0 increases and the ratio of
`i = 1 decreases. It is argued in [8] that both changes are in favor of decoding, and
this is why we see a lower failure rate for larger multiplicity. It is not discussed
in [8] the impact of `i ≥ 2.

From the perspective of statistical decoding, the explanation in [8] does not
make sense. In particular, from the perspective of statistical decoding, the Hi’s
with odd `i’s are the ones which help to decode, while those with even `i’s do

10

Table 1. Relationship between ratios of `i and the multiplicity.

case mult. `i=0 1 2 3 4 5 6 7 8

0 0.450502 0.365833 0.141735 0.034886 0.006130 0.000819 0.000087 0.000007 0.000000
1 0.454535 0.360821 0.140756 0.035992 0.006771 0.000994 0.000118 0.000012 0.000000

CPA 2 0.458623 0.355647 0.139898 0.037070 0.007395 0.001171 0.000152 0.000016 0.000000
3 0.462740 0.350338 0.139189 0.038161 0.008007 0.001354 0.000187 0.000022 0.000000
4 0.466780 0.345376 0.138350 0.039124 0.008576 0.001527 0.000240 0.000029 0.000000

0 0.451770 0.362290 0.141901 0.036170 0.006754 0.000985 0.000117 0.000011 0.000001
1 0.451843 0.362204 0.141877 0.036192 0.006767 0.000988 0.000118 0.000012 0.000001

CCA 2 0.451934 0.362088 0.141858 0.036218 0.006779 0.000992 0.000118 0.000012 0.000001
3 0.452020 0.361981 0.141838 0.036241 0.006792 0.000997 0.000119 0.000012 0.000001
4 0.452088 0.361898 0.141819 0.036260 0.006802 0.001000 0.000120 0.000012 0.000001

not help. As an extreme example, if all `i ∈ {0, 2}, then u = 0, which does not
help to decode.

Nevertheless, we follow the approach in [8] to collect the ratios for all possible
values for `i. The results are given in Table 1. The CASE-0 and CASE-1 in [8,
Table 3] corresponds to multiplicity 0 and non-zero multiplicities. Also, in [8,
Table 3] all the cases with ` ≥ 2 are considered as one case. Therefore Table 1
is much more detailed than [8, Table 3].

We note that it is possible to derive |s| and ∆u/|s| from Table 1. Let T (m, `)
be the entry of Table 1 for multiplicity m and `i = ` (for one of the CPA and
CCA case). Then it is easy to see that, for multiplicity m, |s| is simply

(T (m, 1) + T (m, 3) + T (m, 5) + T (m, 7)) · r,

while ∆u/|s| is simply

T (m, 1) · δ(1) + T (m, 3) · δ(3) + T (m, 5) · δ(5) + T (m, 7) · δ(7)

T (m, 1) + T (m, 3) + T (m, 5) + T (m, 7)
,

where δ(i) = i/t−(w−i)/(n−t). It is probably not so easy to see directly how the
|s| changes when multiplicity increases. However, as the ratio of Hi with `i = 1
decreases and all the ratio of Hi with `i = 3, 5, 7 increases (and as T (m, 1)
dominates T (m, 3), T (m, 5), T (m, 7)), it is clear that ∆u/|s| also increases.

5 A Unified View Between the CPA and CCA Cases

In [8], and also in the experiments for Figure 1, 2, 3 and Table 1, we consider
Φd with difference definitions in the CPA and the CCA case, but eventually we
observe similar changes in the failure rates, ∆u, |s|, and ∆u/|s|. This makes us
wonder if there is a unified way to consider the results for the CPA and the CCA
case. In other words, perhaps increasing the multiplicity of d causes some factor
to change in a similar way for the CPA and CCA case, and the factor is what is
really causing the change in ∆u, |s|, and ∆u/|s|.

From the experiments for the CPA case, it appears that ∆u increases, |s|
decreases, and ∆u/|s| increases roughly linearly as the multiplicity in D(H(0))

11

9.26

9.28

9.30

9.32

9.34

9.36

101-200 201-300 301-400 401-500 501-600 601-700

Δu

D(H(0)) ⊗ D(e(0))

(a) Relation of∆u andD(H(0))⊗D(e(0))

1912

1916

1920

1924

101-200 201-300 301-400 401-500 501-600 601-700

|s|

D(H(0)) ⊗ D(e(0))

(b) Relation of |s| and D(H(0))⊗D(e(0))

0.00482

0.00484

0.00486

0.00488

0.00490

101-200 201-300 301-400 401-500 501-600 601-700

Δu /|s|

D(H(0)) ⊗ D(e(0))

(c) Relation of ∆u/|s| and D(H(0)) ⊗
D(e(0))

Fig. 4. Relationship between ∆u, |s|, ∆u/|s| and D(H(0))⊗D(e(0))

increases. In addition, as the syndrome can be considered as

h(0)(x) · e(0)(x) + h(1)(x) · e(1)(x)

where h(i)(x) and e(i)(x) are corresponding polynomials of H(i) and e(i) in
F2[x]/(xr +1) (as explained in [11]), it seems that the role of e(0)(x) and h(0)(x)
are interchangeable. Therefore, it seems reasonable to assume that ∆u would
increase, |s| would decrease, and ∆u/|s| would increase roughly linearly as the
multiplicity in D(e(0)) increases. One evidence that supports this assumption is
that we observe similar but much smaller changes in ∆u, |s|, and ∆u/|s| in the
CCA case compared to the CPA, and in the CCA case the multiplicity of d in
some e ∈ Φd is much smaller than that for the CPA case (at least bt/2c).

Based on the discussion above, as increasing the multiplicity of d in H(0) and
multiplicity in e(0) should both have help to increase the change in ∆u, |s|, and
∆u/|s|, it seems reasonable to assume that the factors change linearly with

D(H(0))⊗D(e(0)) =
∑
i

D(H(0))[i] ·D(e(0))[i].

Based on this assumption, we carried out experiments and present the results in
Figure 4. Interestingly, as shown in the figure, as D(H(0)) ⊗ D(e(0)) increases,
similar linear changes in ∆u, |s|, and ∆u/|s| can be observed as in Figure 2 and
3.

12

The experiment results in [13, Fig. 3] might seem a bit similar to our results.
We note that |s|, ∆u/|s|, and ∆u are all threshold-independent, while numbers
of iterations in [13, Fig. 3] are threshold-dependent.

References

[1] Jung Hee Cheon, Tsuyoshi Takagi (editors), Advances in cryptology—
ASIACRYPT 2016, 22nd international conference on the theory and application
of cryptology and information security, Hanoi, Vietnam, December 4–8, 2016,
Proceedings, Part I, Lecture Notes in Computer Science, 10031, Springer, 2016.
ISBN 978-3-662-53886-9. See [8].

[2] Guido Bertoni, Jean-Sébastien Coron (editors), Cryptographic hardware and em-
bedded systems—CHES 2013, 15th international workshop, Santa Barbara, CA,
USA, August 20–23, 2013, proceedings, Lecture Notes in Computer Science, 8086,
Springer, 2013. ISBN 978-3-642-40348-4. See [9].

[3] Benedikt Gierlichs, Axel Y. Poschmann (editors), Cryptographic hardware and
embedded systems—CHES 2016, 18th international conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings, Lecture Notes in Computer Science,
9813, Springer, 2016. ISBN 978-3-662-53139-6. See [11].

[4] Lynn Margaret Batten, Reihaneh Safavi-Naini (editors), Information security and
privacy, 11th Australasian conference, ACISP 2006, Melbourne, Australia, July
3-5, 2006, Proceedings, Lecture Notes in Computer Science, 4058, Springer. ISBN
3-540-35458-1. See [12].

[5] Tanja Lange, Rainer Steinwandt (editors), Post-quantum cryptography—9th in-
ternational conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11,
2018, Proceedings, Lecture Notes in Computer Science, 10786, Springer, 2018.
ISBN 978-3-319-79062-6. See [13].

[6] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Citations in this document: §1.

[7] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, Paulo S. L. M. Bar-
reto, MDPC-McEliece: New McEliece variants from moderate density parity-check
codes, IEEE International Symposium on Information Theory (2013), 2069–2073.
URL: http://eprint.iacr.org/2012/409.pdf. Citations in this document: §1,
§2.1, §2.1, §2.1, §2.1, §2.2, §2.2, §2.2, §2.2, §2.3, §3.1.

[8] Qian Guo, Thomas Johansson, Paul Stankovski, A key recovery attack on MDPC
with CCA security using decoding errors, in Asiacrypt 2016 [1] (2016), 789-815.
Citations in this document: §1, §1, §1, §1, §2.1, §2.1, §2.3, §4, §4, §2.3, §2.3, §2.3,
§3, §3.1, §3.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §4.2, §5.

[9] Stefan Heyse, Ingo von Maurich, Tim Güneysu, Smaller keys for code-based cryp-
tography: QC-MDPC McEliece implementations on embedded devices, in CHES
2013 [2] (2013), 273–292. URL: http://eprint.iacr.org/2015/425.pdf. Cita-
tions in this document: §1, §2.2, §2.2.

[10] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166. Citations in
this document: §2.1.

[11] Tung Chou, QcBits: constant-time small-key code-based cryptography, in CHES
2016 [3] (2016), 280-300. Citations in this document: §2.1, §5.

13

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://eprint.iacr.org/2012/409.pdf
http://eprint.iacr.org/2015/425.pdf

[12] Raphael Overbeck, Statistical decoding revisited, in ACISP 2006 [4] (2006), 283–
294. Citations in this document: §4.1, §4.1, §4.1.

[13] Edward Eaton, Matthieu Lequesne, Alex Parent, Nicolas Sendrier, QC-MDPC:
a timing attack and a CCA2 KEM, in PQCrpypto 2018 [5] (2018). Citations in
this document: §4.1, §5, §5.

14

	A Closer Look at the Guo–Johansson–Stankovski Attack Against QC-MDPC Codes

